EpiPipeline4RD / app.py
wzkariampuzha's picture
Update app.py
31055c3
raw
history blame
9.32 kB
import nltk
nltk.data.path.append("/home/user/app/nltk_data")
#nltk.download('stopwords')
#nltk.download('punkt')
from epi_pipeline import (
streamlit_extraction,
NER_Pipeline,
GARD_Search,
Classify_Pipeline
)
import pandas as pd
#pd.set_option('display.max_colwidth', None)
import streamlit as st
st.set_page_config(layout="wide")
#import spacy
#import tensorflow as tf
#import pickle
import re
import plotly.graph_objects as go
#### LOGO ####
st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4RD/raw/main/ncats.png" alt="National Center for Advancing Translational Sciences Logo">''',unsafe_allow_html=True)
st.markdown("")
st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4RD/resolve/main/Logo_GARD_fullres.png" alt="NIH Genetic and Rare Diseases Information Center Logo" width=400>''',unsafe_allow_html=True)
#st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/raw/main/ncats.svg" alt="National Center for Advancing Translational Sciences Logo" width=800>''',unsafe_allow_html=True)
#st.markdown("")
#st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/Logo_GARD_fullres.png" alt="NIH Genetic and Rare Diseases Information Center Logo" width=800>''',unsafe_allow_html=True)
#st.markdown("![National Center for Advancing Translational Sciences (NCATS) Logo](https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/NCATS_logo.png)")
#### TITLE ####
st.title("Epidemiological Information Extraction Pipeline for Rare Diseases")
#st.subheader("National Center for Advancing Translational Sciences (NIH/NCATS)")
#### CHANGE SIDEBAR WIDTH ###
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 250px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 250px;
margin-left: -350px;
}
</style>
""",
unsafe_allow_html=True,
)
### Remove 'Made with Streamlit' Footer
st.markdown("""
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
""", unsafe_allow_html=True)
### ADD NEW FOOTER
footer="""<style>
a:link , a:visited{
color: blue;
background-color: transparent;
text-decoration: underline;
}
a:hover, a:active {
color: red;
background-color: transparent;
text-decoration: underline;
}
.footer {
position: fixed;
left: 10;
bottom: 0;
width: 100%;
background-color: transparent;
color: black;
text-align: left;
}
</style>
<div class="footer">
<p>Developed by <a style='display: block; text-align: center;' href="https://github.com/wzkariampuzha" target="_blank">William Kariampuzha at NIH/NCATS</a></p>
</div>
"""
#st.markdown(footer,unsafe_allow_html=True)
#### DESCRIPTION ####
st.markdown("This application was built by the [National Center for Advancing Translational Sciences (NCATS)](https://ncats.nih.gov/) to automatically search and extract rare disease epidemiology information from PubMed abstracts.")
#### SIDEBAR WIDGETS ####
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)
filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None')).lower()
extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
#### MODEL LOADING ####
@st.experimental_singleton(show_spinner=False)
def load_models_experimental():
epi_classify = Classify_Pipeline()
epi_extract = NER_Pipeline()
rd_identify = GARD_Search()
return epi_classify, epi_extract, rd_identify
#### DOWNLOAD FUNCTION ####
@st.cache
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
#### SANKEY FUNCTION ####
#@st.cache(allow_output_mutation=True)
@st.experimental_singleton()
def epi_sankey(sankey_data, disease_or_gard_id):
found, relevant, epidemiologic = sankey_data
fig = go.Figure(data=[go.Sankey(
node = dict(
pad = 15,
thickness = 20,
line = dict(color = "white", width = 0.5),
label = ["PubMed IDs Gathered", "Irrelevant Abstracts","Relevant Abstracts Gathered","Epidemiologic Abstracts","Not Epidemiologic"],
color = "purple"
),
#label = ["A1", "A2", "B1", "B2", "C1", "C2"]
link = dict(
source = [0, 0, 2, 2],
target = [2, 1, 3, 4],
value = [relevant, found-relevant, epidemiologic, relevant-epidemiologic]
))])
fig.update_layout(
hovermode = 'x',
title="Search for the Epidemiology of "+disease_or_gard_id,
font=dict(size = 10, color = 'black'),
)
return fig
#### BEGIN APP ####
with st.spinner('Loading Epidemiology Models and Dependencies...'):
epi_classify, epi_extract, rd_identify = load_models_experimental()
loaded = st.success('All Models and Dependencies Loaded!')
disease_or_gard_id = st.text_input("Input a rare disease term or NIH GARD ID.")
loaded.empty()
st.markdown("Examples of rare diseases include [**Fellman syndrome**](https://rarediseases.info.nih.gov/diseases/1/gracile-syndrome), [**Classic Homocystinuria**](https://rarediseases.info.nih.gov/diseases/6667/classic-homocystinuria), [**7383**](https://rarediseases.info.nih.gov/diseases/7383/phenylketonuria), and [**GARD:0009941**](https://rarediseases.info.nih.gov/diseases/9941/fshmd1a). A full list of rare diseases tracked by the NIH Genetic and Rare Diseases Information Center (GARD) can be found [here](https://rarediseases.info.nih.gov/diseases/browse-by-first-letter).")
if disease_or_gard_id:
df, sankey_data, disease_gardid = streamlit_extraction(disease_or_gard_id, max_results, filtering,
epi_extract, rd_identify, extract_diseases, epi_classify)
#IF it returns something, then continue.
if sankey_data:
df.replace(to_replace='None', value="None")
st.dataframe(df, height=200)
csv = convert_df(df)
#if the user input does not have a number in it (i.e. weak proxy for if it is a GARD ID), then preserve the user input as the disease term.
disease, gardID = disease_gardid
if not bool(re.search(r'\d', disease_or_gard_id)):
disease = disease_or_gard_id
st.download_button(
label="Download epidemiology results for "+disease+" as CSV",
data = csv,
file_name=disease+'.csv',
mime='text/csv',
)
if gardID:
st.markdown('See the NIH GARD page for ['+disease+'](https://rarediseases.info.nih.gov/diseases/'+str(re.sub('GARD:|0','',gardID))+'/'+str('-'.join(disease.split()))+')')
fig = epi_sankey(sankey_data, disease)
st.plotly_chart(fig, use_container_width=True)
if 'IDS' in list(df.columns):
st.markdown('''COLUMNS: \\
- PROB_OF_EPI: Probability that the paper is an epidemiologic study based on its abstract. \\
- IsEpi: If it is an epidemiologic study (If PROB_OF_EPI >0.5) \\
- DIS: Rare disease terms or synonyms identified in the abstract from the GARD Dictionary
- IDS: GARD IDs identified in the abstract from the GARD Dictionary \\
- EPI: Epidemiology Types are the metrics used to estimate disease burden such as "incidence", "prevalence rate", or "occurrence"
- STAT: Epidemiology Rates describe how many people are afflicted by a disease.
- DATE: The dates when the epidemiologic studies were conducted
- LOC: Where the epidemiologic studies were conducted.
- SEX: The biological sexes mentioned in the abstract. Useful for diseases that disproportionately affect one sex over the other or may provide context to composition of the study population
- ETHN: Ethnicities, races, and nationalities of those represented in the epidemiologic study.
''')
else:
st.subheader("Categories of Results")
st.markdown(" - **PROB_OF_EPI**: Probability that the paper is an epidemiologic study based on its abstract. \n - **IsEpi**: If it is an epidemiologic study (If PROB_OF_EPI >0.5) \n - **EPI**: Epidemiology Types are the metrics used to estimate disease burden such as 'incidence', 'prevalence rate', or 'occurrence' \n - **STAT**: Epidemiology Rates describe how many people are afflicted by a disease. \n - **DATE**: The dates when the epidemiologic studies were conducted \n - **LOC**: Where the epidemiologic studies were conducted. \n - **SEX**: The biological sexes mentioned in the abstract. Useful for diseases that disproportionately affect one sex over the other or may provide context to composition of the study population \n - **ETHN**: Ethnicities, races, and nationalities of those represented in the epidemiologic study.")
#st.dataframe(data=None, width=None, height=None)