EpiPipeline4RD / app.py
wzkariampuzha's picture
Update app.py
f2852e3
raw
history blame
4.11 kB
import nltk
nltk.download('stopwords')
import pandas as pd
#classify_abs is a dependency for extract_abs
import classify_abs
import extract_abs
#pd.set_option('display.max_colwidth', None)
import streamlit as st
########## Title for the Web App ##########
st.title("Epidemiology Extraction Pipeline for Rare Diseases")
st.subheader("by the National Center for Advancing Translational Sciences (NIH/NCATS)")
#st.header(body, anchor=None)
#st.subheader(body, anchor=None)
#Anchor is for the URL, can be custom str
# https://docs.streamlit.io/library/api-reference/text/st.markdown
'''
col1, col2 = st.columns(2)
with col1:
st.header("Rare ")
disease_or_gard_id = st.text_input('Input a rare disease term or a GARD ID.', 'Fellman syndrome')
with col2:
filtering = st.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None'))
extract_diseases = st.checkbox("Extract Rare Diseases", value=False)
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
max_results = st.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)
# https://docs.streamlit.io/library/api-reference/widgets/st.number_input
with col1:
with st.spinner('Loading Epidemiology Models and Dependencies...'):
classify_model_vars = classify_abs.init_classify_model()
st.success('Epidemiology Classification Model Loaded!')
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
st.success('Epidemiology Extraction Model Loaded!')
GARD_dict, max_length = extract_abs.load_GARD_diseases()
st.success('All Models and Dependencies Loaded!')
'''
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)
# https://docs.streamlit.io/library/api-reference/widgets/st.number_input
# st.radio(label, options, index=0, format_func=special_internal_function, key=None, help=None, on_change=None, args=None, kwargs=None, *, disabled=False)
# https://docs.streamlit.io/library/api-reference/widgets/st.radio
filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None'))
extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
# https://docs.streamlit.io/library/api-reference/widgets/st.checkbox
with st.spinner('Loading Epidemiology Models and Dependencies...'):
classify_model_vars = classify_abs.init_classify_model()
st.success('Epidemiology Classification Model Loaded!')
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
st.success('Epidemiology Extraction Model Loaded!')
GARD_dict, max_length = extract_abs.load_GARD_diseases()
st.success('All Models and Dependencies Loaded!')
'''
#LSTM RNN Epi Classifier Model
with st.spinner('Loading Epidemiology Classification Model...'):
classify_model_vars = classify_abs.init_classify_model()
st.success('Epidemiology Classification Model Loaded!')
#GARD Dictionary - For filtering and exact match disease/GARD ID identification
with st.spinner('Loading GARD Rare Disease Dictionary...'):
GARD_dict, max_length = extract_abs.load_GARD_diseases()
st.success('GARD Rare Disease Dictionary Loaded!')
#BioBERT-based NER pipeline, open `entities` to see
with st.spinner('Loading Epidemiology Extraction Model...'):
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
st.success('Epidemiology Extraction Model Loaded!')
'''
#filtering options are 'strict','lenient'(default), 'none'
if text:
df = extract_abs.search_term_extraction(disease_or_gard_id, max_results, filtering,
NER_pipeline, entity_classes,
extract_diseases,GARD_dict, max_length,
classify_model_vars)
st.dataframe(df)
st.balloons()
#st.dataframe(data=None, width=None, height=None)
# st.code(body, language="python")