Spaces:
Sleeping
Sleeping
wzkariampuzha
commited on
Commit
•
0d9531e
1
Parent(s):
c6171a2
Update app.py
Browse files
app.py
CHANGED
@@ -62,6 +62,24 @@ def load_models():
|
|
62 |
GARD_dict, max_length = extract_abs.load_GARD_diseases()
|
63 |
return classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
with st.spinner('Loading Epidemiology Models and Dependencies...'):
|
66 |
classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length = load_models_experimental()
|
67 |
#classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length = load_models()
|
@@ -84,7 +102,6 @@ if disease_or_gard_id:
|
|
84 |
extract_diseases,GARD_dict, max_length,
|
85 |
classify_model_vars)
|
86 |
st.dataframe(df, height=100)
|
87 |
-
csv = convert_df(df)
|
88 |
st.download_button(
|
89 |
label="Download epidemiology results for "+disease_or_gard_id+" as CSV",
|
90 |
data=df.to_csv().encode('utf-8'),
|
@@ -95,5 +112,7 @@ if disease_or_gard_id:
|
|
95 |
gathered, relevant, epidemiologic = sankey_data
|
96 |
if st.button('Display Sankey Diagram'):
|
97 |
st.write('Sankey Diagram here')
|
|
|
|
|
98 |
pass
|
99 |
# st.code(body, language="python")
|
|
|
62 |
GARD_dict, max_length = extract_abs.load_GARD_diseases()
|
63 |
return classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length
|
64 |
|
65 |
+
def epi_sankey(sankey_data):
|
66 |
+
gathered, relevant, epidemiologic = sankey_data
|
67 |
+
fig = go.Figure(data=[go.Sankey(
|
68 |
+
node = dict(
|
69 |
+
pad = 15,
|
70 |
+
thickness = 20,
|
71 |
+
line = dict(color = "black", width = 0.5),
|
72 |
+
label = ["PubMed IDs Gathered", "Relevant Abstracts Gathered", "Irrelevant", "Epidemiologic", "Irrelevant"],
|
73 |
+
color = "blue"
|
74 |
+
),
|
75 |
+
#label = ["A1", "A2", "B1", "B2", "C1", "C2"]
|
76 |
+
link = dict(
|
77 |
+
source = [0, 0, 0, 1, 3]
|
78 |
+
target = [0, 1, 2, 3, 4],
|
79 |
+
value = [gathered, gathered-relevant, relevant, epidemiologic, gathered-epidemiologic]
|
80 |
+
))])
|
81 |
+
return fig
|
82 |
+
|
83 |
with st.spinner('Loading Epidemiology Models and Dependencies...'):
|
84 |
classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length = load_models_experimental()
|
85 |
#classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length = load_models()
|
|
|
102 |
extract_diseases,GARD_dict, max_length,
|
103 |
classify_model_vars)
|
104 |
st.dataframe(df, height=100)
|
|
|
105 |
st.download_button(
|
106 |
label="Download epidemiology results for "+disease_or_gard_id+" as CSV",
|
107 |
data=df.to_csv().encode('utf-8'),
|
|
|
112 |
gathered, relevant, epidemiologic = sankey_data
|
113 |
if st.button('Display Sankey Diagram'):
|
114 |
st.write('Sankey Diagram here')
|
115 |
+
#fig = epi_sankey(sankey_data)
|
116 |
+
#st.plotly_chart(fig, use_container_width=True)
|
117 |
pass
|
118 |
# st.code(body, language="python")
|