Spaces:
Sleeping
Sleeping
wzkariampuzha
commited on
Commit
•
1656abd
1
Parent(s):
5f6a009
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ import extract_abs
|
|
8 |
import streamlit as st
|
9 |
|
10 |
########## Title for the Web App ##########
|
11 |
-
st.title("Epidemiology Extraction Pipeline for Rare Diseases")
|
12 |
|
13 |
#st.header(body, anchor=None)
|
14 |
#st.subheader(body, anchor=None)
|
@@ -16,41 +16,50 @@ st.title("Epidemiology Extraction Pipeline for Rare Diseases")
|
|
16 |
|
17 |
# https://docs.streamlit.io/library/api-reference/text/st.markdown
|
18 |
|
19 |
-
|
20 |
-
disease_or_gard_id = st.text_input('Input a rare disease term or a GARD ID.', 'Fellman syndrome')
|
21 |
-
|
22 |
-
# st.code(body, language="python")
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# st.radio(label, options, index=0, format_func=special_internal_function, key=None, help=None, on_change=None, args=None, kwargs=None, *, disabled=False)
|
27 |
# https://docs.streamlit.io/library/api-reference/widgets/st.radio
|
28 |
-
filtering = st.sidebar.radio(
|
29 |
-
"What type of filtering would you like?",
|
30 |
-
('Strict', 'Lenient', 'None'))
|
31 |
|
32 |
-
extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
|
33 |
# https://docs.streamlit.io/library/api-reference/widgets/st.checkbox
|
34 |
|
35 |
#LSTM RNN Epi Classifier Model
|
36 |
-
with st.spinner('Loading Epidemiology Classification Model...'):
|
37 |
-
classify_model_vars = classify_abs.init_classify_model()
|
38 |
-
st.success('Epidemiology Classification Model Loaded!')
|
39 |
|
40 |
#GARD Dictionary - For filtering and exact match disease/GARD ID identification
|
41 |
-
with st.spinner('Loading GARD Rare Disease Dictionary...'):
|
42 |
-
GARD_dict, max_length = extract_abs.load_GARD_diseases()
|
43 |
-
st.success('GARD Rare Disease Dictionary Loaded!')
|
44 |
-
|
45 |
|
46 |
#BioBERT-based NER pipeline, open `entities` to see
|
47 |
-
with st.spinner('Loading Epidemiology Extraction Model...'):
|
48 |
-
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
|
49 |
-
st.success('Epidemiology Extraction Model Loaded!')
|
50 |
|
51 |
-
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
|
52 |
-
max_results = st.sidebar.number_input(label, min_value=1, max_value=None, value=50)
|
53 |
-
# https://docs.streamlit.io/library/api-reference/widgets/st.number_input
|
54 |
|
55 |
#filtering options are 'strict','lenient'(default), 'none'
|
56 |
if text:
|
@@ -59,4 +68,6 @@ if text:
|
|
59 |
extract_diseases,GARD_dict, max_length,
|
60 |
classify_model_vars)
|
61 |
st.dataframe(df)
|
62 |
-
#st.dataframe(data=None, width=None, height=None)
|
|
|
|
|
|
8 |
import streamlit as st
|
9 |
|
10 |
########## Title for the Web App ##########
|
11 |
+
st.title("Epidemiology Extraction Pipeline for Rare Diseases by the National Center for Advancing Translational Sciences (NIH/NCATS)")
|
12 |
|
13 |
#st.header(body, anchor=None)
|
14 |
#st.subheader(body, anchor=None)
|
|
|
16 |
|
17 |
# https://docs.streamlit.io/library/api-reference/text/st.markdown
|
18 |
|
19 |
+
col1, col2 = st.columns(2)
|
|
|
|
|
|
|
20 |
|
21 |
+
with col1:
|
22 |
+
st.header("Rare ")
|
23 |
+
disease_or_gard_id = st.text_input('Input a rare disease term or a GARD ID.', 'Fellman syndrome')
|
24 |
+
|
25 |
+
with col2:
|
26 |
+
filtering = st.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None'))
|
27 |
+
extract_diseases = st.checkbox("Extract Rare Diseases", value=False)
|
28 |
+
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
|
29 |
+
max_results = st.sidebar.number_input(label, min_value=1, max_value=None, value=50)
|
30 |
+
# https://docs.streamlit.io/library/api-reference/widgets/st.number_input
|
31 |
|
32 |
+
with col1:
|
33 |
+
with st.spinner('Loading Epidemiology Models and Dependencies...'):
|
34 |
+
classify_model_vars = classify_abs.init_classify_model()
|
35 |
+
st.success('Epidemiology Classification Model Loaded!')
|
36 |
+
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
|
37 |
+
st.success('Epidemiology Extraction Model Loaded!')
|
38 |
+
GARD_dict, max_length = extract_abs.load_GARD_diseases()
|
39 |
+
st.success('All Models and Dependencies Loaded!')
|
40 |
|
41 |
# st.radio(label, options, index=0, format_func=special_internal_function, key=None, help=None, on_change=None, args=None, kwargs=None, *, disabled=False)
|
42 |
# https://docs.streamlit.io/library/api-reference/widgets/st.radio
|
43 |
+
#filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None'))
|
|
|
|
|
44 |
|
45 |
+
#extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
|
46 |
# https://docs.streamlit.io/library/api-reference/widgets/st.checkbox
|
47 |
|
48 |
#LSTM RNN Epi Classifier Model
|
49 |
+
#with st.spinner('Loading Epidemiology Classification Model...'):
|
50 |
+
# classify_model_vars = classify_abs.init_classify_model()
|
51 |
+
#st.success('Epidemiology Classification Model Loaded!')
|
52 |
|
53 |
#GARD Dictionary - For filtering and exact match disease/GARD ID identification
|
54 |
+
#with st.spinner('Loading GARD Rare Disease Dictionary...'):
|
55 |
+
# GARD_dict, max_length = extract_abs.load_GARD_diseases()
|
56 |
+
#st.success('GARD Rare Disease Dictionary Loaded!')
|
|
|
57 |
|
58 |
#BioBERT-based NER pipeline, open `entities` to see
|
59 |
+
#with st.spinner('Loading Epidemiology Extraction Model...'):
|
60 |
+
# NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
|
61 |
+
#st.success('Epidemiology Extraction Model Loaded!')
|
62 |
|
|
|
|
|
|
|
63 |
|
64 |
#filtering options are 'strict','lenient'(default), 'none'
|
65 |
if text:
|
|
|
68 |
extract_diseases,GARD_dict, max_length,
|
69 |
classify_model_vars)
|
70 |
st.dataframe(df)
|
71 |
+
#st.dataframe(data=None, width=None, height=None)
|
72 |
+
|
73 |
+
# st.code(body, language="python")
|