Spaces:
Running
Running
wzkariampuzha
commited on
Commit
·
847adc5
1
Parent(s):
38efeba
Update app.py
Browse files
app.py
CHANGED
@@ -9,46 +9,14 @@ import streamlit as st
|
|
9 |
|
10 |
########## Title for the Web App ##########
|
11 |
st.title("Epidemiology Extraction Pipeline for Rare Diseases")
|
12 |
-
st.subheader("
|
13 |
-
#st.header(body, anchor=None)
|
14 |
-
#st.subheader(body, anchor=None)
|
15 |
-
#Anchor is for the URL, can be custom str
|
16 |
-
|
17 |
-
# https://docs.streamlit.io/library/api-reference/text/st.markdown
|
18 |
-
'''
|
19 |
-
col1, col2 = st.columns(2)
|
20 |
-
|
21 |
-
with col1:
|
22 |
-
st.header("Rare ")
|
23 |
-
disease_or_gard_id = st.text_input('Input a rare disease term or a GARD ID.', 'Fellman syndrome')
|
24 |
-
|
25 |
-
with col2:
|
26 |
-
filtering = st.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None'))
|
27 |
-
extract_diseases = st.checkbox("Extract Rare Diseases", value=False)
|
28 |
-
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
|
29 |
-
max_results = st.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)
|
30 |
-
# https://docs.streamlit.io/library/api-reference/widgets/st.number_input
|
31 |
-
|
32 |
-
with col1:
|
33 |
-
with st.spinner('Loading Epidemiology Models and Dependencies...'):
|
34 |
-
classify_model_vars = classify_abs.init_classify_model()
|
35 |
-
st.success('Epidemiology Classification Model Loaded!')
|
36 |
-
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
|
37 |
-
st.success('Epidemiology Extraction Model Loaded!')
|
38 |
-
GARD_dict, max_length = extract_abs.load_GARD_diseases()
|
39 |
-
st.success('All Models and Dependencies Loaded!')
|
40 |
-
'''
|
41 |
|
42 |
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
|
43 |
max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)
|
44 |
-
|
45 |
-
|
46 |
-
# st.radio(label, options, index=0, format_func=special_internal_function, key=None, help=None, on_change=None, args=None, kwargs=None, *, disabled=False)
|
47 |
-
# https://docs.streamlit.io/library/api-reference/widgets/st.radio
|
48 |
filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None'))
|
49 |
|
50 |
extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
|
51 |
-
# https://docs.streamlit.io/library/api-reference/widgets/st.checkbox
|
52 |
|
53 |
with st.spinner('Loading Epidemiology Models and Dependencies...'):
|
54 |
classify_model_vars = classify_abs.init_classify_model()
|
@@ -58,24 +26,8 @@ with st.spinner('Loading Epidemiology Models and Dependencies...'):
|
|
58 |
GARD_dict, max_length = extract_abs.load_GARD_diseases()
|
59 |
st.success('All Models and Dependencies Loaded!')
|
60 |
|
61 |
-
|
62 |
-
#LSTM RNN Epi Classifier Model
|
63 |
-
with st.spinner('Loading Epidemiology Classification Model...'):
|
64 |
-
classify_model_vars = classify_abs.init_classify_model()
|
65 |
-
st.success('Epidemiology Classification Model Loaded!')
|
66 |
-
|
67 |
-
#GARD Dictionary - For filtering and exact match disease/GARD ID identification
|
68 |
-
with st.spinner('Loading GARD Rare Disease Dictionary...'):
|
69 |
-
GARD_dict, max_length = extract_abs.load_GARD_diseases()
|
70 |
-
st.success('GARD Rare Disease Dictionary Loaded!')
|
71 |
-
|
72 |
-
#BioBERT-based NER pipeline, open `entities` to see
|
73 |
-
with st.spinner('Loading Epidemiology Extraction Model...'):
|
74 |
-
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
|
75 |
-
st.success('Epidemiology Extraction Model Loaded!')
|
76 |
-
'''
|
77 |
|
78 |
-
#filtering options are 'strict','lenient'(default), 'none'
|
79 |
if text:
|
80 |
df = extract_abs.search_term_extraction(disease_or_gard_id, max_results, filtering,
|
81 |
NER_pipeline, entity_classes,
|
|
|
9 |
|
10 |
########## Title for the Web App ##########
|
11 |
st.title("Epidemiology Extraction Pipeline for Rare Diseases")
|
12 |
+
st.subheader("National Center for Advancing Translational Sciences (NIH/NCATS)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
|
15 |
max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)
|
16 |
+
|
|
|
|
|
|
|
17 |
filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None'))
|
18 |
|
19 |
extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
|
|
|
20 |
|
21 |
with st.spinner('Loading Epidemiology Models and Dependencies...'):
|
22 |
classify_model_vars = classify_abs.init_classify_model()
|
|
|
26 |
GARD_dict, max_length = extract_abs.load_GARD_diseases()
|
27 |
st.success('All Models and Dependencies Loaded!')
|
28 |
|
29 |
+
GARD_Disease_Id = st.text_input("Input a rare disease term or GARD ID.", value="Fellman syndrome")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
31 |
if text:
|
32 |
df = extract_abs.search_term_extraction(disease_or_gard_id, max_results, filtering,
|
33 |
NER_pipeline, entity_classes,
|