Spaces:
Sleeping
Sleeping
wzkariampuzha
commited on
Commit
•
a8b6710
1
Parent(s):
5dc2016
Update app.py
Browse files
app.py
CHANGED
@@ -69,17 +69,20 @@ with st.spinner('Loading Epidemiology Models and Dependencies...'):
|
|
69 |
#nlpSci = spacy.load("en_ner_bc5cdr_md")
|
70 |
#nlpSci2 = spacy.load('en_ner_bionlp13cg_md')
|
71 |
#classify_model_vars = (nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer)
|
72 |
-
st.success('All Models and Dependencies Loaded!')
|
73 |
-
|
74 |
disease_or_gard_id = st.text_input("Input a rare disease term or GARD ID.")
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
if disease_or_gard_id:
|
78 |
df = extract_abs.streamlit_extraction(disease_or_gard_id, max_results, filtering,
|
79 |
NER_pipeline, entity_classes,
|
80 |
extract_diseases,GARD_dict, max_length,
|
81 |
classify_model_vars)
|
82 |
-
st.dataframe(df)
|
83 |
csv = convert_df(df)
|
84 |
st.download_button(
|
85 |
label="Download epidemiology results for "+disease_or_gard_id+" as CSV",
|
|
|
69 |
#nlpSci = spacy.load("en_ner_bc5cdr_md")
|
70 |
#nlpSci2 = spacy.load('en_ner_bionlp13cg_md')
|
71 |
#classify_model_vars = (nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer)
|
72 |
+
loaded = st.success('All Models and Dependencies Loaded!')
|
|
|
73 |
disease_or_gard_id = st.text_input("Input a rare disease term or GARD ID.")
|
74 |
+
loaded.empty()
|
75 |
+
|
76 |
+
st.markdown("Examples of rare diseases include [**Fellman syndrome**](https://rarediseases.info.nih.gov/diseases/1/gracile-syndrome), [**Classic Homocystinuria**](https://rarediseases.info.nih.gov/diseases/6667/classic-homocystinuria), [**phenylketonuria**](https://rarediseases.info.nih.gov/diseases/7383/phenylketonuria), and [GARD:0009941](https://rarediseases.info.nih.gov/diseases/9941/fshmd1a).")
|
77 |
+
|
78 |
+
st.markdown("A full list of rare diseases tracked by GARD can be found [here](https://rarediseases.info.nih.gov/diseases/browse-by-first-letter).")
|
79 |
|
80 |
if disease_or_gard_id:
|
81 |
df = extract_abs.streamlit_extraction(disease_or_gard_id, max_results, filtering,
|
82 |
NER_pipeline, entity_classes,
|
83 |
extract_diseases,GARD_dict, max_length,
|
84 |
classify_model_vars)
|
85 |
+
st.dataframe(df, height=100))
|
86 |
csv = convert_df(df)
|
87 |
st.download_button(
|
88 |
label="Download epidemiology results for "+disease_or_gard_id+" as CSV",
|