Spaces:
Sleeping
Sleeping
wzkariampuzha
commited on
Commit
•
c52403d
1
Parent(s):
c14e35e
Update classify_abs.py
Browse files- classify_abs.py +60 -61
classify_abs.py
CHANGED
@@ -291,70 +291,69 @@ def streamlit_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:
|
|
291 |
searchterm_list = list(searchterm_list)
|
292 |
#maxResults is multiplied by a little bit because sometimes the results returned is more than maxResults
|
293 |
percent_by_step = 1/(maxResults*1.05)
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query
|
304 |
-
r = requests.get(url)
|
305 |
-
root = ET.fromstring(r.content)
|
306 |
-
|
307 |
-
for result in root.iter('IdList'):
|
308 |
-
if len(pmids) >= maxResults:
|
309 |
-
break
|
310 |
-
pmidlist = [pmid.text for pmid in result.iter('Id')]
|
311 |
-
pmids.update(pmidlist)
|
312 |
-
PMIDs_bar.progress(min(round(len(pmids)*percent_by_step,1),1.0))
|
313 |
-
|
314 |
-
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core'
|
315 |
-
r = requests.get(url)
|
316 |
-
root = ET.fromstring(r.content)
|
317 |
-
|
318 |
-
for result in root.iter('result'):
|
319 |
-
if len(pmids) >= maxResults:
|
320 |
-
break
|
321 |
-
pmidlist = [pmid.text for pmid in result.iter('id')]
|
322 |
-
if len(pmidlist) > 0:
|
323 |
-
pmid = pmidlist[0]
|
324 |
-
if pmid[0].isdigit():
|
325 |
-
pmids.add(pmid)
|
326 |
-
PMIDs_bar.progress(min(round(len(pmids)*percent_by_step,1),1.0))
|
327 |
-
PMIDs_bar.empty()
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
pmid_abs[pmid] = abstract
|
355 |
abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0))
|
356 |
-
|
357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
st.success('Found '+str(len(pmids))+' PMIDs. Gathered '+str(len(pmid_abs))+' Relevant Abstracts. Classifying and extracting epidemiology information...')
|
359 |
|
360 |
return pmid_abs, (len(pmids),len(pmid_abs))
|
|
|
291 |
searchterm_list = list(searchterm_list)
|
292 |
#maxResults is multiplied by a little bit because sometimes the results returned is more than maxResults
|
293 |
percent_by_step = 1/(maxResults*1.05)
|
294 |
+
with st.spinner("Gathering PubMed IDs..."):
|
295 |
+
PMIDs_bar = st.progress(0)
|
296 |
+
for dz in searchterm_list:
|
297 |
+
term = ''
|
298 |
+
dz_words = dz.split()
|
299 |
+
for word in dz_words:
|
300 |
+
term += word + '%20'
|
301 |
+
query = term[:-3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
+
url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query
|
304 |
+
r = requests.get(url)
|
305 |
+
root = ET.fromstring(r.content)
|
306 |
+
|
307 |
+
for result in root.iter('IdList'):
|
308 |
+
if len(pmids) >= maxResults:
|
309 |
+
break
|
310 |
+
pmidlist = [pmid.text for pmid in result.iter('Id')]
|
311 |
+
pmids.update(pmidlist)
|
312 |
+
PMIDs_bar.progress(min(round(len(pmids)*percent_by_step,1),1.0))
|
313 |
+
|
314 |
+
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core'
|
315 |
+
r = requests.get(url)
|
316 |
+
root = ET.fromstring(r.content)
|
317 |
+
|
318 |
+
for result in root.iter('result'):
|
319 |
+
if len(pmids) >= maxResults:
|
320 |
+
break
|
321 |
+
pmidlist = [pmid.text for pmid in result.iter('id')]
|
322 |
+
if len(pmidlist) > 0:
|
323 |
+
pmid = pmidlist[0]
|
324 |
+
if pmid[0].isdigit():
|
325 |
+
pmids.add(pmid)
|
326 |
+
PMIDs_bar.progress(min(round(len(pmids)*percent_by_step,1),1.0))
|
327 |
+
PMIDs_bar.empty()
|
328 |
+
|
329 |
+
with st.spinner("Found "+str(len(pmids))+" PMIDs. Gathering Abstracts and Filtering..."):
|
330 |
+
abstracts_bar = st.progress(0)
|
331 |
+
percent_by_step = 1/(maxResults)
|
332 |
+
if filtering !='none' or filtering !='strict':
|
333 |
+
filter_terms = set(searchterm_list).union(set(str(re.sub(',','',' '.join(searchterm_list))).split()).difference(STOPWORDS))
|
334 |
+
|
335 |
+
for pmid in pmids:
|
336 |
+
abstract = PMID_getAb(pmid)
|
337 |
+
if len(abstract)>5:
|
338 |
+
#do filtering here
|
339 |
+
if filtering == 'strict':
|
340 |
+
uncased_ab = abstract.lower()
|
341 |
+
for term in searchterm_list:
|
342 |
+
if term.lower() in uncased_ab:
|
343 |
+
pmid_abs[pmid] = abstract
|
344 |
+
abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0))
|
345 |
+
break
|
346 |
+
elif filtering =='none':
|
347 |
pmid_abs[pmid] = abstract
|
348 |
abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0))
|
349 |
+
|
350 |
+
#Default filtering is 'lenient'.
|
351 |
+
else:
|
352 |
+
#Else and if are separated for readability and to better understand logical flow.
|
353 |
+
if set(filter_terms).intersection(set(word_tokenize(abstract))):
|
354 |
+
pmid_abs[pmid] = abstract
|
355 |
+
abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0))
|
356 |
+
abstracts_bar.empty()
|
357 |
st.success('Found '+str(len(pmids))+' PMIDs. Gathered '+str(len(pmid_abs))+' Relevant Abstracts. Classifying and extracting epidemiology information...')
|
358 |
|
359 |
return pmid_abs, (len(pmids),len(pmid_abs))
|