wzkariampuzha commited on
Commit
cde5ff7
1 Parent(s): c1347a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -6
app.py CHANGED
@@ -41,7 +41,7 @@ filtering = st.sidebar.radio("What type of filtering would you like?",('Strict',
41
 
42
  extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
43
 
44
- @st.experimental_singleton
45
  def load_models_experimental():
46
  classify_model_vars = classify_abs.init_classify_model()
47
  NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
@@ -62,10 +62,6 @@ def load_models():
62
  GARD_dict, max_length = extract_abs.load_GARD_diseases()
63
  return classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length
64
 
65
- def convert_df(df):
66
- # IMPORTANT: Cache the conversion to prevent computation on every rerun
67
- return df.to_csv().encode('utf-8')
68
-
69
  with st.spinner('Loading Epidemiology Models and Dependencies...'):
70
  classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length = load_models_experimental()
71
  #classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length = load_models()
@@ -88,7 +84,7 @@ if disease_or_gard_id:
88
  csv = convert_df(df)
89
  st.download_button(
90
  label="Download epidemiology results for "+disease_or_gard_id+" as CSV",
91
- data=csv,
92
  file_name=disease_or_gard_id+'.csv',
93
  mime='text/csv',
94
  )
 
41
 
42
  extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
43
 
44
+ @st.experimental_singleton(show_spinner=False)
45
  def load_models_experimental():
46
  classify_model_vars = classify_abs.init_classify_model()
47
  NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
 
62
  GARD_dict, max_length = extract_abs.load_GARD_diseases()
63
  return classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length
64
 
 
 
 
 
65
  with st.spinner('Loading Epidemiology Models and Dependencies...'):
66
  classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length = load_models_experimental()
67
  #classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length = load_models()
 
84
  csv = convert_df(df)
85
  st.download_button(
86
  label="Download epidemiology results for "+disease_or_gard_id+" as CSV",
87
+ data=df.to_csv().encode('utf-8'),
88
  file_name=disease_or_gard_id+'.csv',
89
  mime='text/csv',
90
  )