import pandas as pd import classify_abs #classify_abs is a dependency for extract_abs import extract_abs pd.set_option('display.max_colwidth', None) import streamlit as st #LSTM RNN Epi Classifier Model classify_model_vars = classify_abs.init_classify_model() #GARD Dictionary - For filtering and exact match disease/GARD ID identification GARD_dict, max_length = extract_abs.load_GARD_diseases() #BioBERT-based NER pipeline, open `entities` to see NER_pipeline, entity_classes = extract_abs.init_NER_pipeline() #max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering #filtering options are 'strict','lenient'(default), 'none' if text: out = extract_abs.search_term_extraction(term, max_results, filtering, NER_pipeline, entity_classes, extract_diseases,GARD_dict, max_length, classify_model_vars) st.(out)