import nltk nltk.data.path.append("/home/user/app/nltk_data") #nltk.download('stopwords') #nltk.download('punkt') import classify_abs import extract_abs import pandas as pd #pd.set_option('display.max_colwidth', None) import streamlit as st st.set_page_config(layout="wide") import spacy import tensorflow as tf import pickle import re import plotly.graph_objects as go #### LOGO #### st.markdown('''National Center for Advancing Translational Sciences Logo''',unsafe_allow_html=True) st.markdown("") st.markdown('''NIH Genetic and Rare Diseases Information Center Logo''',unsafe_allow_html=True) #st.markdown('''National Center for Advancing Translational Sciences Logo''',unsafe_allow_html=True) #st.markdown("") #st.markdown('''NIH Genetic and Rare Diseases Information Center Logo''',unsafe_allow_html=True) #st.markdown("![National Center for Advancing Translational Sciences (NCATS) Logo](https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/NCATS_logo.png)") #### TITLE #### st.title("Epidemiological Information Extraction Pipeline for Rare Diseases") #st.subheader("National Center for Advancing Translational Sciences (NIH/NCATS)") #### CHANGE SIDEBAR WIDTH ### st.markdown( """ """, unsafe_allow_html=True, ) #### DESCRIPTION #### st.markdown("This application was built by the [National Center for Advancing Translational Sciences (NCATS)](https://ncats.nih.gov/) to automatically search and extract rare disease epidemiology information from PubMed abstracts.") #### SIDEBAR WIDGETS #### #max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50) filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None')).lower() extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False) #### MODEL LOADING #### @st.experimental_singleton(show_spinner=False) def load_models_experimental(): classify_model_vars = classify_abs.init_classify_model() NER_pipeline, entity_classes = extract_abs.init_NER_pipeline() GARD_dict, max_length = extract_abs.load_GARD_diseases() return classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length #### DOWNLOAD FUNCTION #### @st.cache def convert_df(df): # IMPORTANT: Cache the conversion to prevent computation on every rerun return df.to_csv().encode('utf-8') #### SANKEY FUNCTION #### #@st.cache(allow_output_mutation=True) @st.experimental_singleton() def epi_sankey(sankey_data, disease_or_gard_id): found, relevant, epidemiologic = sankey_data fig = go.Figure(data=[go.Sankey( node = dict( pad = 15, thickness = 20, line = dict(color = "white", width = 0.5), label = ["PubMed IDs Gathered", "Irrelevant Abstracts","Relevant Abstracts Gathered","Epidemiologic Abstracts","Not Epidemiologic"], color = "purple" ), #label = ["A1", "A2", "B1", "B2", "C1", "C2"] link = dict( source = [0, 0, 2, 2], target = [2, 1, 3, 4], value = [relevant, found-relevant, epidemiologic, relevant-epidemiologic] ))]) fig.update_layout( hovermode = 'x', title="Search for the Epidemiology of "+disease_or_gard_id, font=dict(size = 10, color = 'black'), ) return fig #### BEGIN APP #### with st.spinner('Loading Epidemiology Models and Dependencies...'): classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length = load_models_experimental() loaded = st.success('All Models and Dependencies Loaded!') disease_or_gard_id = st.text_input("Input a rare disease term or NIH GARD ID.") loaded.empty() st.markdown("Examples of rare diseases include [**Fellman syndrome**](https://rarediseases.info.nih.gov/diseases/1/gracile-syndrome), [**Classic Homocystinuria**](https://rarediseases.info.nih.gov/diseases/6667/classic-homocystinuria), [**7383**](https://rarediseases.info.nih.gov/diseases/7383/phenylketonuria), and [**GARD:0009941**](https://rarediseases.info.nih.gov/diseases/9941/fshmd1a). A full list of rare diseases tracked by the NIH Genetic and Rare Diseases Information Center (GARD) can be found [here](https://rarediseases.info.nih.gov/diseases/browse-by-first-letter).") if disease_or_gard_id: df, sankey_data, name_gardID = extract_abs.streamlit_extraction(disease_or_gard_id, max_results, filtering, NER_pipeline, entity_classes, extract_diseases, GARD_dict, max_length, classify_model_vars) #IF it returns something, then continue. if sankey_data: df.replace(to_replace='None', value="None") st.dataframe(df, height=200) csv = convert_df(df) disease, gardID = name_gardID #if the user input does not have a number in it (i.e. weak proxy for if it is a GARD ID), then preserve the user input as the disease term. if not bool(re.search(r'\d', disease_or_gard_id)): disease = disease_or_gard_id st.download_button( label="Download epidemiology results for "+disease+" as CSV", data = csv, file_name=disease+'.csv', mime='text/csv', ) st.markdown('See the NIH GARD page for ['+disease+'](https://rarediseases.info.nih.gov/diseases/'+str(re.sub('GARD:|0','',gardID))+'/'+str('-'.join(disease.split()))+')') fig = epi_sankey(sankey_data,disease) st.plotly_chart(fig, use_container_width=True) if 'IDS' in list(df.columns): st.markdown('''COLUMNS: \\ - PROB_OF_EPI: Probability that the paper is an epidemiologic study based on its abstract. \\ - IsEpi: If it is an epidemiologic study (If PROB_OF_EPI >0.5) \\ - DIS: Rare disease terms or synonyms identified in the abstract from the GARD Dictionary - IDS: GARD IDs identified in the abstract from the GARD Dictionary \\ - EPI: Epidemiology Types are the metrics used to estimate disease burden such as "incidence", "prevalence rate", or "occurrence" - STAT: Epidemiology Rates describe how many people are afflicted by a disease. - DATE: The dates when the epidemiologic studies were conducted - LOC: Where the epidemiologic studies were conducted. - SEX: The biological sexes mentioned in the abstract. Useful for diseases that disproportionately affect one sex over the other or may provide context to composition of the study population - ETHN: Ethnicities, races, and nationalities of those represented in the epidemiologic study. ''') else: st.subheader("Categories of Results") st.markdown(" - **PROB_OF_EPI**: Probability that the paper is an epidemiologic study based on its abstract. \n - **IsEpi**: If it is an epidemiologic study (If PROB_OF_EPI >0.5) \n - **EPI**: Epidemiology Types are the metrics used to estimate disease burden such as 'incidence', 'prevalence rate', or 'occurrence' \n - **STAT**: Epidemiology Rates describe how many people are afflicted by a disease. \n - **DATE**: The dates when the epidemiologic studies were conducted \n - **LOC**: Where the epidemiologic studies were conducted. \n - **SEX**: The biological sexes mentioned in the abstract. Useful for diseases that disproportionately affect one sex over the other or may provide context to composition of the study population \n - **ETHN**: Ethnicities, races, and nationalities of those represented in the epidemiologic study.") #st.dataframe(data=None, width=None, height=None)