Spaces:
Running
Running
File size: 6,427 Bytes
9c88354 0a7969d 9c88354 0a7969d 9c88354 0a7969d c20d7c1 0a7969d c20d7c1 0a7969d c20d7c1 0a7969d c20d7c1 0a7969d c20d7c1 0a7969d c20d7c1 0a7969d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import io
import os
import sys
import contextlib
import pandas as pd
import streamlit as st
from navicat_spock.spock import run_spock_from_args
# Add spock directory to system path if not already present
spock_dir: str = os.path.dirname(os.path.abspath(__file__)) + "/spock"
if spock_dir not in sys.path:
sys.path.append(spock_dir)
# Check if the dataframe contains a target column
def check_columns(df: pd.DataFrame) -> None:
if not any(["target" in col.lower() for col in df.columns]):
raise ValueError(
"Missing the target column. Please add a column that contains `target` in the name."
)
# Cache the function to run spock with the provided dataframe and arguments
@st.cache_data(
show_spinner=False,
# hash_funcs={pd.DataFrame: lambda df: df.to_numpy().tobytes()},
)
def cached_run_fn(df, wp, verb, imputer_strat, plotmode, seed, prefit, setcbms):
with capture_stdout_with_timestamp() as stdout_io:
fig, _ = run_spock_from_args(
df,
wp=wp,
verb=verb,
imputer_strat=imputer_strat,
plotmode=plotmode,
seed=seed,
prefit=prefit,
setcbms=setcbms,
fig=None,
ax=None,
)
return fig, stdout_io.getvalue()
# Mock function for testing purposes
def mock_fn(df, *args, **kwargs):
import numpy as np
import matplotlib.pyplot as plt
check_columns(df)
print("WORKING")
fig, ax = plt.subplots()
ax.plot(np.random.rand(10))
return fig
# Load data from the uploaded file
def load_data(file):
accepted_ext = ["csv", "xlsx"]
if file.name.split(".")[-1] not in accepted_ext:
raise ValueError("Invalid file type. Please upload a CSV or Excel file.")
return pd.read_csv(file) if file.name.endswith(".csv") else pd.read_excel(file)
# Context manager to capture stdout with a timestamp
@contextlib.contextmanager
def capture_stdout_with_timestamp():
class TimestampedIO(io.StringIO):
def write(self, msg):
if msg.strip(): # Only add a timestamp if the message is not just a newline
timestamped_msg = f"[{pd.Timestamp.now()}] {msg}"
else:
timestamped_msg = msg
super().write(timestamped_msg)
new_stdout = TimestampedIO()
old_stdout = sys.stdout
sys.stdout = new_stdout
try:
yield new_stdout
finally:
sys.stdout = old_stdout
@st.experimental_dialog("Import Data")
def import_data():
st.write("Choose a dataset or upload your own file")
option = st.radio("Select an option:", ["Use example dataset", "Upload file"])
if option == "Use example dataset":
examples = {
"Sabatier": "examples/sabatier.csv",
# Add more examples here
}
selected_example = st.selectbox(
"Choose an example dataset", list(examples.keys())
)
if st.button("Load Example"):
df = pd.read_csv(examples[selected_example])
st.session_state.df = df
st.rerun()
else:
uploaded_file = st.file_uploader(
"Upload a CSV or Excel file", type=["csv", "xlsx"]
)
if uploaded_file is not None:
try:
df = load_data(uploaded_file)
st.session_state.df = df
st.rerun()
except Exception as e:
st.error(f"Error loading file: {e}")
def main():
st.title("Navicat Spock")
st.subheader("Generate volcano plots from your data")
# Instructions
with st.expander("Instructions", expanded=False):
st.markdown(
"""
1. Click "Import Data" to upload a file or select an example dataset.
2. Review your data in the table.
3. Adjust the plot settings in the sidebar if needed.
4. Click "Generate plot" to create your plot.
5. View the generated plot and logs in the respective tabs.
"""
)
if "df" not in st.session_state:
if st.button("Import Data"):
import_data()
st.stop()
# Display the data
st.header("Review the data")
st.dataframe(st.session_state.df, use_container_width=True)
# Option to import new data
if st.button("Import New Data"):
import_data()
# Settings
with st.sidebar:
st.header("Settings")
wp = st.number_input(
"Weighting Power",
min_value=0,
value=2,
help="Weighting power used to adjust the target values",
)
verb = st.number_input(
"Verbosity",
min_value=0,
max_value=7,
value=1,
help="Verbosity level (0-7) for the logs",
)
imputer_strat_dict = {
None: "none",
"Iterative": "iterative",
"Simple": "simple",
"KNN": "knn",
}
imputer_strat_value = st.selectbox(
"Imputer Strategy",
filter(lambda x: x, list(imputer_strat_dict.keys())),
index=None,
help="Imputer Strategy used to fill missing values",
)
imputer_strat = imputer_strat_dict[imputer_strat_value]
plotmode = st.number_input(
"Plot Mode",
min_value=0,
max_value=3,
value=1,
help="Different plot modes",
)
seed = st.number_input(
"Seed", min_value=0, value=None, help="Seed number to fix the random state"
)
prefit = st.toggle("Prefit", value=False)
setcbms = st.toggle("CBMS", value=True)
# Run the plot
st.header("Generate plot")
if st.button("Generate plot"):
with st.spinner("Generating plot..."):
fig, logs = cached_run_fn(
st.session_state.df,
wp=wp,
verb=verb,
imputer_strat=imputer_strat,
plotmode=plotmode,
seed=seed,
prefit=prefit,
setcbms=setcbms,
)
st.header("Results")
plot, logs_tab = st.tabs(["Plot", "Logs"])
with plot:
st.pyplot(fig)
with logs_tab:
st.code(logs, language="bash")
if __name__ == "__main__":
main()
|