Spaces:
Runtime error
Runtime error
File size: 11,174 Bytes
b97f6e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import json
import random
import string
import time
import numpy as np
import tritonclient.grpc as client_util
from tokenizers import Tokenizer
from tritonclient.utils import np_to_triton_dtype, InferenceServerException
np.finfo(np.dtype("float32"))
np.finfo(np.dtype("float64"))
class CodeGenProxy:
def __init__(self, host: str = 'triton', port: int = 8001, verbose: bool = False):
self.tokenizer = Tokenizer.from_file('/python-docker/cgtok/tokenizer.json')
self.client = client_util.InferenceServerClient(url=f'{host}:{port}', verbose=verbose)
self.PAD_CHAR = 50256
# Max number of tokens the model can handle
self.MAX_MODEL_LEN = 2048
class TokensExceedsMaximum(Exception):
pass
@staticmethod
def prepare_tensor(name: str, tensor_input):
t = client_util.InferInput(
name, tensor_input.shape, np_to_triton_dtype(tensor_input.dtype))
t.set_data_from_numpy(tensor_input)
return t
@staticmethod
def trim_with_stopwords(output: str, stopwords: list) -> str:
for w in sorted(stopwords, key=len, reverse=True):
if output.endswith(w):
output = output[:-len(w)]
break
return output
@staticmethod
def to_word_list_format(word_dict, tokenizer):
flat_ids = []
offsets = []
for word_dict_item in word_dict:
item_flat_ids = []
item_offsets = []
for word in word_dict_item:
ids = tokenizer.encode(word).ids
if len(ids) == 0:
continue
item_flat_ids += ids
item_offsets.append(len(ids))
# Hack, can we do this better?
if word == '\n\n':
item_flat_ids += [198, 198]
item_offsets.append(2)
flat_ids.append(np.array(item_flat_ids))
offsets.append(np.cumsum(np.array(item_offsets)))
pad_to = max(1, max(len(ids) for ids in flat_ids))
for i, (ids, offs) in enumerate(zip(flat_ids, offsets)):
flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0)
offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1)
return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2))
def generate(self, data):
prompt = data['prompt']
n = data.get('n', 1)
model_name = data["model"]
# ugly hack to set the data type correctly. Huggingface models want int32, but fastertransformer needs uint32
# i could've done the conversion from uint32 to int32 in the model but that'd be inefficient.
np_type = np.int32 if model_name.startswith("py-") else np.uint32
input_start_ids = np.expand_dims(self.tokenizer.encode(prompt).ids, 0)
input_start_ids = np.repeat(input_start_ids, n, axis=0).astype(np_type)
prompt_len = input_start_ids.shape[1]
input_len = prompt_len * np.ones([input_start_ids.shape[0], 1]).astype(np_type)
max_tokens = data.get('max_tokens', 16)
prompt_tokens: int = input_len[0][0]
requested_tokens = max_tokens + prompt_tokens
if requested_tokens > self.MAX_MODEL_LEN:
print(1)
raise self.TokensExceedsMaximum(
f"This model's maximum context length is {self.MAX_MODEL_LEN}, however you requested "
f"{requested_tokens} tokens ({prompt_tokens} in your prompt; {max_tokens} for the completion). "
f"Please reduce your prompt; or completion length."
)
output_len = np.ones_like(input_len).astype(np_type) * max_tokens
num_logprobs = data.get('logprobs', -1)
if num_logprobs is None:
num_logprobs = 1
want_logprobs = num_logprobs > 0
temperature = data.get('temperature', 0.2)
if temperature == 0.0:
temperature = 1.0
top_k = 1
else:
top_k = data.get('top_k', 0)
top_p = data.get('top_p', 1.0)
frequency_penalty = data.get('frequency_penalty', 1.0)
runtime_top_k = top_k * np.ones([input_start_ids.shape[0], 1]).astype(np_type)
runtime_top_p = top_p * np.ones([input_start_ids.shape[0], 1]).astype(np.float32)
beam_search_diversity_rate = 0.0 * np.ones([input_start_ids.shape[0], 1]).astype(np.float32)
random_seed = np.random.randint(0, 2 ** 31 - 1, (input_start_ids.shape[0], 1), dtype=np.int32)
temperature = temperature * np.ones([input_start_ids.shape[0], 1]).astype(np.float32)
len_penalty = 1.0 * np.ones([input_start_ids.shape[0], 1]).astype(np.float32)
repetition_penalty = frequency_penalty * np.ones([input_start_ids.shape[0], 1]).astype(np.float32)
is_return_log_probs = want_logprobs * np.ones([input_start_ids.shape[0], 1]).astype(np.bool_)
beam_width = (1 * np.ones([input_start_ids.shape[0], 1])).astype(np_type)
start_ids = self.PAD_CHAR * np.ones([input_start_ids.shape[0], 1]).astype(np_type)
end_ids = self.PAD_CHAR * np.ones([input_start_ids.shape[0], 1]).astype(np_type)
stop_words = data.get('stop', [])
if stop_words is None:
stop_words = []
if stop_words:
stop_word_list = np.repeat(self.to_word_list_format([stop_words], self.tokenizer), input_start_ids.shape[0],
axis=0)
else:
stop_word_list = np.concatenate([np.zeros([input_start_ids.shape[0], 1, 1]).astype(
np.int32), (-1 * np.ones([input_start_ids.shape[0], 1, 1])).astype(np.int32)], axis=1)
# Not used
bad_words_list = np.concatenate([np.zeros([input_start_ids.shape[0], 1, 1]).astype(
np.int32), (-1 * np.ones([input_start_ids.shape[0], 1, 1])).astype(np.int32)], axis=1)
inputs = [
self.prepare_tensor("input_ids", input_start_ids),
self.prepare_tensor("input_lengths", input_len),
self.prepare_tensor("request_output_len", output_len),
self.prepare_tensor("runtime_top_k", runtime_top_k),
self.prepare_tensor("runtime_top_p", runtime_top_p),
self.prepare_tensor("beam_search_diversity_rate", beam_search_diversity_rate),
self.prepare_tensor("random_seed", random_seed),
self.prepare_tensor("temperature", temperature),
self.prepare_tensor("len_penalty", len_penalty),
self.prepare_tensor("repetition_penalty", repetition_penalty),
self.prepare_tensor("is_return_log_probs", is_return_log_probs),
self.prepare_tensor("beam_width", beam_width),
self.prepare_tensor("start_id", start_ids),
self.prepare_tensor("end_id", end_ids),
self.prepare_tensor("bad_words_list", bad_words_list),
self.prepare_tensor("stop_words_list", stop_word_list),
]
result = self.client.infer(model_name, inputs)
output_data = result.as_numpy("output_ids")
if output_data is None:
raise RuntimeError("No output data")
# All of these squeeze(1)s are to remove the beam width dimension.
output_data = output_data.squeeze(1)
if want_logprobs:
lp_data = result.as_numpy("output_log_probs").squeeze(1)
# clp_data = result.as_numpy("cum_log_probs").squeeze(1)
else:
lp_data = [None] * output_data.shape[0]
sequence_lengths = result.as_numpy("sequence_length").squeeze(1)
gen_len = sequence_lengths - input_len.squeeze(1)
decoded = self.tokenizer.decode_batch([out[prompt_len:prompt_len + g] for g, out in zip(gen_len, output_data)])
trimmed = [self.trim_with_stopwords(d, stop_words) for d in decoded]
choices = []
for i, (text, tokens, lps, g) in enumerate(zip(trimmed, output_data, lp_data, gen_len)):
reason = "length" if max_tokens == g else "stop"
if lps is not None:
tokens_str = [self.tokenizer.decode([t]) for t in tokens[prompt_len:prompt_len + g]]
offsets = [len(prompt)] + (np.cumsum([len(t) for t in tokens_str]) + len(prompt)).tolist()[:-1]
# Fake some log probs for top_logprobs
top_logprobs = []
for ii, t in enumerate(tokens_str):
fakedict = {}
top_token_lp = float(lps[ii])
fakedict[t] = top_token_lp
while len(fakedict) < num_logprobs:
random_token = random.randint(0, self.tokenizer.get_vocab_size() - 1)
random_token_str = self.tokenizer.decode([random_token])
if random_token_str in fakedict:
continue
random_token_lp = top_token_lp - random.random()
fakedict[random_token_str] = random_token_lp
top_logprobs.append(fakedict)
lpdict = {
'token_logprobs': lps.tolist(),
'top_logprobs': top_logprobs,
'tokens': tokens_str,
'text_offset': offsets,
}
else:
lpdict = None
choice = {
'text': text,
'index': i,
'finish_reason': reason,
'logprobs': lpdict,
}
choices.append(choice)
completion = {
'id': None, # fill in
'model': 'codegen',
'object': 'text_completion',
'created': int(time.time()),
'choices': None, # fill in
'usage': {
'completion_tokens': int(gen_len.sum()),
'prompt_tokens': int(prompt_len),
'total_tokens': int(gen_len.sum() + prompt_len),
}
}
return completion, choices
@staticmethod
def random_completion_id():
return 'cmpl-' + ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(29))
def streamed_response(self, completion, choices):
for c in choices:
completion['id'] = self.random_completion_id()
completion['choices'] = [c]
yield f'data: {json.dumps(completion)}\n\n'
yield 'data: [DONE]\n\n'
def non_streamed_response(self, completion, choices) -> str:
completion['id'] = self.random_completion_id()
completion['choices'] = choices
return json.dumps(completion)
def __call__(self, data: dict):
st = time.time()
try:
completion, choices = self.generate(data)
except InferenceServerException as E:
print(E)
completion = {}
choices = []
ed = time.time()
print(f"Returned completion in {(ed - st) * 1000} ms")
if data.get('stream', False):
return self.streamed_response(completion, choices)
else:
return self.non_streamed_response(completion, choices)
|