File size: 20,543 Bytes
7dd9869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# syntax, semantics, etc...
import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer

import argparse
import os

import numpy as np
import torch as th
import torch.distributed as dist
from transformers import set_seed
from improved_diffusion.rounding import rounding_func, load_models, load_tokenizer
from improved_diffusion import dist_util, logger
from improved_diffusion.script_util import (
    NUM_CLASSES,
    model_and_diffusion_defaults,
    create_model_and_diffusion,
    add_dict_to_argparser,
    args_to_dict,
)
from nltk.tree import Tree

from improved_diffusion.test_util import  load_results



def remove_leaves(tree_):
    # simple_increm = 0
    for s in tree_.subtrees(lambda t: t.height() == 2):
        s[0] = '*'
        s._label = ''
    return tree_

def main():
    args = create_argparser().parse_args()
    set_seed(42)

    # toy1 = 'START Alimentum is not a family - friendly place , located in city centre . \n END'.split()
    # toy1 = 'START Located in riverside area , Alimentum restaurant is a place to bring the whole family . \n END'.split()
    toy1 = ['START', 'The', 'Vaults', 'pub', 'near', 'Café', 'Adriatic', 'has', 'a', '5', 'star', 'rating',
            '.', 'Prices', 'start', 'at', '£', '30', '.', 'END']

    if args.mode == 'tree':

        model = AutoModelForCausalLM.from_pretrained(
            args.model_name_or_path, # path to the AR model trained for LMing this task.
        ).cuda()
        model.eval()

        if args.finetune == 'yes':
            tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
        else:

            pass

        control_label_lst = []
        with open('diffusion_lm/improved-diffusion/control_gen/target_tree.json', 'r') as controlf:
            for line in controlf:
                control_label_lst.append(json.loads(line))

        result_dict = {}
        for label_class_dict in control_label_lst:  # control_label_lst[:100]:
            '''
                input_strings = [" ".join(pos_) + tokenizer.bos_token + " ".join(seq) + tokenizer.eos_token
                                         for (pos_, seq) in zip(pos_lst, examples['text'])]
            '''
            parse_tree = Tree.fromstring(label_class_dict['tree'])
            print(parse_tree)
            parse_tree = remove_leaves(parse_tree)

            prompt_strings =  parse_tree._pformat_flat("", "()", False) + tokenizer.bos_token
            prompt_ids = tokenizer([prompt_strings], return_tensors='pt')
            out_text = generate_samples(args, prompt_ids['input_ids'].cuda(), model, tokenizer)
            result_dict[(label_class_dict['tree'],)] = out_text
            print(len(out_text))

        fout = open(args.output_text, 'w')
        for k, word_lst in result_dict.items():
            print({k: word_lst}, file=fout)
        fout.close()

        # # load trees.
        # import benepar
        # parser = benepar.Parser("benepar_en3")
        # input_sentence1 = benepar.InputSentence(
        #     words=toy1[1:-1],
        # )
        # parse_lst = list(parser.parse_sents([input_sentence1]))[0]
        # print(parse_lst)
        # parse_lst = remove_leaves(parse_lst)
        # prompt_strings = parse_lst._pformat_flat("", "()", False) + tokenizer.bos_token
        # print(prompt_strings)
        # prompt_ids = tokenizer([prompt_strings], return_tensors='pt')
        # print(prompt_ids['input_ids'].shape)
        #
        # generate_gpt2(args, prompt_ids['input_ids'].cuda())

        # eval(args)
    if args.mode == 'spans':

        model = AutoModelForCausalLM.from_pretrained(
            args.model_name_or_path, # path to the AR model trained for LMing this task.
        ).cuda()
        model.eval()

        if args.finetune == 'yes':
            tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
        else:
            import benepar
            parser = benepar.Parser("benepar_en3")
            tree_vocab = parser._parser.config["label_vocab"]

            model_path = 'predictability/diffusion_models_v6/diff_e2e-tgt_pad_rand16_transformer_lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart'
            tokenizer2 = load_tokenizer('e2e-tgt', 'random', model_path)
            tokenizer = {v: k for k, v in tokenizer2.items()}
            print(len(tokenizer), len(tokenizer2), 'loaded vocabs')

            print('update the vocab to include tree vocabs')
            print(len(tokenizer))
            for x in tree_vocab.keys():
                tokenizer[x] = len(tokenizer)
            print('update the vocab to include indices')
            # tokenizer.add_tokens([str(xx) for xx in range(64)])
            for x in range(64):
                if str(x) not in tokenizer:
                    tokenizer[str(x)] = len(tokenizer)
            vocab_dict = tokenizer
            rev_tokenizer = {v: k for k, v in vocab_dict.items()}
        print(len(tokenizer))


        control_label_lst = []
        with open('diffusion_lm/improved-diffusion/control_gen/target_spans.json', 'r') as controlf:
            for line in controlf:
                control_label_lst.append(json.loads(line))

        result_dict = {}
        for span_info in control_label_lst:  # control_label_lst[:100]:
            (a,b,c) = span_info['spans'][0]
            if args.finetune == 'yes':
                prompt_strings = f"{a}, {b}, {c}" + tokenizer.bos_token
                print(prompt_strings)
                prompt_ids = tokenizer([prompt_strings], return_tensors='pt')
                out_text = generate_samples(args, prompt_ids['input_ids'].cuda(), model, tokenizer)
            else:
                prompt_ids = [vocab_dict.get(x, vocab_dict['UNK']) for x in f"{a} {b} {c}".split()] + [0]
                print(prompt_ids)
                prompt_ids = torch.LongTensor(prompt_ids).unsqueeze(0)
                out_text = generate_samples_from_scratch(args, prompt_ids.cuda(), model, tokenizer, rev_tokenizer)
            # str(label_class_dict['spans'][0]),
            result_dict[str(span_info['spans'][0])] = out_text
            print(len(out_text))

        fout = open(args.output_text, 'w')
        for k, word_lst in result_dict.items():
            print({(k,): word_lst}, file=fout)
        fout.close()
    elif args.mode == 'pos':
        import spacy_stanza
        model = AutoModelForCausalLM.from_pretrained(
            args.model_name_or_path,  # path to the AR model trained for LMing this task.
        ).cuda()
        model.eval()

        if args.finetune == 'yes':
            tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
        else:
            pass

        control_label_lst = []
        with open('diffusion_lm/improved-diffusion/control_gen/target_pos.json', 'r') as controlf:
            for line in controlf:
                control_label_lst.append(json.loads(line))
        print(control_label_lst[:5])

        result_dict = {}
        for label_class_dict in control_label_lst:  # control_label_lst[:100]:
            '''
                input_strings = [" ".join(pos_) + tokenizer.bos_token + " ".join(seq) + tokenizer.eos_token
                                         for (pos_, seq) in zip(pos_lst, examples['text'])]
            '''
            gold_pos = label_class_dict['pos'][1:-1] # remove START, END.
            words_ = label_class_dict['words_']
            print(gold_pos, 'target POS tagging sequences', tokenizer.bos_token)
            prompt_strings = " ".join(gold_pos) + tokenizer.bos_token
            prompt_ids = tokenizer([prompt_strings], return_tensors='pt')
            out_text = generate_samples(args, prompt_ids['input_ids'].cuda(), model, tokenizer )
            result_dict[tuple(gold_pos)] = out_text
            print(len(out_text))

        fout = open(args.output_text, 'w')
        for k, word_lst in result_dict.items():
            print({k:word_lst}, file=fout)
        fout.close()


        # tagger = spacy_stanza.load_pipeline("en", processors={"tokenize": "spacy"})
        # toy1 = 'START The Mill is a coffee shop with an expensive menu near The Sorrento . \n END'.split()
        # toy1 = ['START', 'The', 'Vaults', 'pub', 'near', 'Café', 'Adriatic', 'has', 'a', '5', 'star', 'rating', '.',
        #         'Prices', 'start', 'at', '£', '30', '.', '\n', 'END']
        # sent_full = " ".join(toy1[1:-1])
        # doc = tagger(sent_full)
        # gold_pos = [token.pos_ for token in doc]
        # print(gold_pos, 'target POS tagging sequences')
        # prompt_strings = " ".join(gold_pos) + tokenizer.bos_token
        # prompt_ids = tokenizer([prompt_strings], return_tensors='pt')
        # generate_gpt2(args, prompt_ids['input_ids'].cuda())

    elif args.mode == 'attribute':
        model = AutoModelForCausalLM.from_pretrained(
            args.model_name_or_path,  # path to the AR model trained for LMing this task.
        ).cuda()
        model.eval()

        if args.finetune == 'yes':
            tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
        else:
            pass

        control_label_lst = []
        with open('diffusion_lm/improved-diffusion/control_gen/target_attribute.json', 'r') as controlf:
            for line in controlf:
                control_label_lst.append(json.loads(line))
        print(control_label_lst[:5])

        result_dict = {}
        for label_class in control_label_lst:  # control_label_lst[:100]:
            prompt_strings = " ".join(label_class) + tokenizer.bos_token
            '''
            input_strings = [
                        " ".join(attributes) + tokenizer.bos_token + " ".join(words) + tokenizer.eos_token
                        for (words, attributes) in examples['text']]
            '''
            print(label_class, 'target attribute sequences', tokenizer.bos_token)
            prompt_ids = tokenizer([prompt_strings], return_tensors='pt')
            out_text = generate_samples(args, prompt_ids['input_ids'].cuda(), model, tokenizer)
            result_dict[tuple(label_class)] = out_text
            print(len(out_text))

        fout = open(args.output_text, 'w')
        for k, word_lst in result_dict.items():
            print({k: word_lst}, file=fout)
        fout.close()

    elif args.mode == 'control_len':
        model = AutoModelForCausalLM.from_pretrained(
            args.model_name_or_path,  # path to the AR model trained for LMing this task.
        ).cuda()
        model.eval()

        if args.finetune == 'yes':
            tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
        else:
            pass


        result_dict = {}
        for label_class in range(10, 41):  # control_label_lst[:100]:
            tgt_len = label_class-2
            prompt_strings = f"{tgt_len}" + tokenizer.bos_token
            print(label_class, 'target attribute sequences', tokenizer.bos_token)
            prompt_ids = tokenizer([prompt_strings], return_tensors='pt')
            out_text = generate_samples(args, prompt_ids['input_ids'].cuda(), model, tokenizer)
            result_dict[tuple([label_class])] = out_text
            print(len(out_text))

        fout = open(args.output_text, 'w')
        for k, word_lst in result_dict.items():
            print({k: word_lst}, file=fout)
        fout.close()

        # generate_gpt2(args)


def eval(args):
    text_samples = []
    if args.input_text.endswith('json'):
        with open(args.input_text, 'r') as f:
            for line in f:
                text_samples.append(json.loads(line)[0].split(' '))
    else:
        with open(args.input_text, 'r') as f:
            for line in f:
                text_samples.append(line.strip().split())

    # tokenize
    # load tokenizer.
    tokenizer = load_tokenizer(args.modality, args.experiment, os.path.split(args.model_path)[0])
    # print(args.modality, tokenizer, args.experiment)
    reverse_tokenizer = {v: k for k, v in tokenizer.items()}

    agg_loss = []
    for x in text_samples:
        # print(x)
        tokenized_x = [reverse_tokenizer[s] for s in x]
        # print(tokenized_x)
        tokenized_x = torch.LongTensor(tokenized_x).cuda()
        labels = tokenized_x.clone()
        labels[labels == reverse_tokenizer['PAD']] = -100
        model_output = model(tokenized_x, labels=labels)
        # print(model_output.loss)
        agg_loss.append(model_output.loss.item())

    print(f'\nthe mean loss is {torch.tensor(agg_loss).mean()} for {args.input_text}', )
    print('-' * 50)
    if 'infill' in args.input_text:
        json_path = os.path.join(os.path.split(args.model_path)[0], 'infill_score_decode.json')
    elif 'ema' in args.model_path:
        json_path = os.path.join(os.path.split(args.model_path)[0], 'ema_score_decode.json')
    else:
        json_path = os.path.join(os.path.split(args.model_path)[0], 'score_decode.json')
    print(f'written to {json_path}')
    json_dict = {
        'score_decode': torch.tensor(agg_loss).mean().item(),
        'source_decode': args.input_text,
    }
    load_results(json_path, json_dict)

def generate_samples(args, prompt, model, tokenizer):
    if args.generation_mode == 'search':
        sample_out = model.generate(prompt, do_sample=False, max_length=200, min_length=prompt.size(1) + 1, num_beams=4,
                                    top_k=len(tokenizer), top_p=args.top_p, num_return_sequences=1,
                                    pad_token_id=tokenizer.pad_token_id)
    else:
        sample_out = model.generate(prompt, do_sample=True, max_length=200, min_length=prompt.size(1)+1,
                                    top_k=len(tokenizer), top_p=args.top_p, num_return_sequences=1,
                                    pad_token_id=tokenizer.pad_token_id)
    sample_out_lst = sample_out[:, prompt.size(1):]
    # sample_out_lst.append(sample_out.cpu())
    # sample_out_lst = torch.cat(sample_out_lst, dim=0)
    text_out = []
    for sample in sample_out_lst:
        sample = sample.tolist()
        words_sample = tokenizer.decode(sample, skip_special_tokens=True)
        text_out.append(words_sample)
    return text_out

def generate_samples_from_scratch(args, prompt, model, tokenizer, rev_tokenizer):
    print('generating from scratch')
    if args.generation_mode == 'search':
        sample_out = model.generate(prompt, do_sample=False, max_length=200, min_length=prompt.size(1) + 1, num_beams=4,
                                    top_k=len(tokenizer), top_p=args.top_p, num_return_sequences=1,
                                    pad_token_id=tokenizer['PAD'], eos_token_id=tokenizer['END'])
    else:
        sample_out = model.generate(prompt, do_sample=True, max_length=200, min_length=prompt.size(1) + 1,
                                    top_k=len(tokenizer), top_p=args.top_p, num_return_sequences=50,
                                    pad_token_id=tokenizer['PAD'], eos_token_id=tokenizer['END'])
    sample_out_lst = sample_out[:, prompt.size(1):]
    # sample_out_lst.append(sample_out.cpu())
    # sample_out_lst = torch.cat(sample_out_lst, dim=0)
    text_out = []
    for sample in sample_out_lst:
        sample = sample.tolist()
        words_sample = " ".join([rev_tokenizer[x] for x in sample])
        text_out.append(words_sample)
    return text_out

def generate_gpt2(args, prompt=None):

    print(f'loading from {args.model_name_or_path}')
    model = AutoModelForCausalLM.from_pretrained(
        args.model_name_or_path,  # path to the AR model trained for LMing this task.
    ).cuda()

    # load tokenizer.
    sample_out_lst = []
    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
    sample_out = model.generate(prompt, do_sample=True, max_length=200,
                                top_k=len(tokenizer), top_p=args.top_p, num_return_sequences=50, pad_token_id=tokenizer.pad_token_id)
    sample_out = sample_out[:, prompt.size(1):]
    sample_out_lst.append(sample_out.cpu())
    sample_out_lst = torch.cat(sample_out_lst, dim=0)


    if args.output_text.endswith('json'):
        with open(args.output_text, 'w') as f:
            for sample in sample_out_lst:
                sample = sample.tolist()
                words_sample = tokenizer.decode(sample, skip_special_tokens=True)
                print(json.dumps([words_sample]), file=f)
    else:
        with open(args.output_text, 'w') as f:
            for sample in sample_out_lst:
                sample = sample.tolist()
                words_sample = tokenizer.decode(sample,  skip_special_tokens=True)
                print(words_sample, file=f)

    agg_loss = []
    for tokenized_x in sample_out:
        labels = tokenized_x.clone()
        labels[labels == tokenizer.eos_token_id] = -100
        model_output = model(tokenized_x, labels=labels)
        agg_loss.append(model_output.loss.item())

    print(f'\nthe mean loss is {torch.tensor(agg_loss).mean()}',)
    print('-'*50)

def generate(args):

    model = AutoModelForCausalLM.from_pretrained(
        args.model_name_or_path,  # path to the AR model trained for LMing this task.
    ).cuda()

    print(model.transformer.wte)
    # print(model)
    # load tokenizer.
    tokenizer = load_tokenizer(args.modality, args.experiment, os.path.split(args.model_path)[0])
    reverse_tokenizer = {v: k for k, v in tokenizer.items()}
    print(len(tokenizer))

    init_prompt = torch.LongTensor([reverse_tokenizer['START']]).view(1,1).expand(50, -1).to(model.device)
    sample_out = model.generate(init_prompt, do_sample=True,  max_length=64,
                                top_k=len(tokenizer), top_p=args.top_p)
    print(sample_out.shape)

    if args.output_text.endswith('json'):
        with open(args.output_text, 'w') as f:
            for sample in sample_out:
                sample = sample.tolist()
                words_sample = [tokenizer[s] for s in sample]
                print(json.dumps([" ".join(words_sample)]), file=f)
    else:
        with open(args.output_text, 'w') as f:
            for sample in sample_out:
                sample = sample.tolist()
                words_sample = [tokenizer[s] for s in sample]
                print(" ".join(words_sample), file=f)

    agg_loss = []
    for tokenized_x in sample_out:
        model_output = model(tokenized_x, labels=tokenized_x)
        agg_loss.append(model_output.loss.item())

    print(f'\nthe mean loss is {torch.tensor(agg_loss).mean()}',)
    print('-'*50)

    ##################

    text_samples = []
    if args.output_text.endswith('json'):
        with open(args.output_text, 'r') as f:
            for line in f:
                text_samples.append(json.loads(line)[0].split(' '))
    else:
        with open(args.output_text, 'r') as f:
            for line in f:
                text_samples.append(line.strip().split())


    agg_loss = []
    for idx, x in enumerate(text_samples):
        # print(x)
        tokenized_x = [reverse_tokenizer[s] for s in x]
        tokenized_x = torch.LongTensor(tokenized_x).cuda()
        # print(tokenized_x)
        # print(sample_out[idx])
        # print((tokenized_x == sample_out[idx]).all())
        model_output = model(tokenized_x, labels=tokenized_x)
        # print(model_output.loss)
        agg_loss.append(model_output.loss.item())

    print(f'\nthe mean loss is {torch.tensor(agg_loss).mean()} for {args.input_text}', )



def create_argparser():
    defaults = dict(
        clip_denoised=True,
        num_samples=50,#10000,
        batch_size=16,
        use_ddim=False,
        model_path="",
        model_arch='conv-unet',
        verbose='yes',
        finetune='yes',
        generation_mode='sample',
    )
    text_defaults = dict(modality='text',
                         dataset_name='wikitext',
                         input_text='',
                         mode='eval',
                         output_text='',
                         dataset_config_name='wikitext-2-raw-v1',
                         model_name_or_path='predictability/diff_models/compress_e=5_b=60_m=gpt2_wikitext-103-raw-v1_None',
                         experiment='gpt2_pre_compress', model_arch='trans-unet',
                         preprocessing_num_workers=1, top_p=1.0,)
    defaults.update(model_and_diffusion_defaults())
    defaults.update(text_defaults)
    # defaults.update(model_and_diffusion_defaults())
    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)
    return parser





if __name__ == '__main__':
    with torch.no_grad():
        main()