File size: 23,825 Bytes
7dd9869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import torch, argparse, json
import benepar, spacy_stanza
import numpy as np
import sys, os
import csv
from nltk.tree import Tree
sys.path.insert(0, os.path.join(sys.path[0], '../scripts/'))
from tree_helper import chart_from_tree, pad_charts, padded_chart_from_spans
sys.path.insert(0, os.path.join(sys.path[0], '../../misc/self-attentive-parser/src/'))
import evaluate
from spacy.lang.en import English
from collections import defaultdict
from transformers import AutoModelForCausalLM, AutoTokenizer
from improved_diffusion.rounding import rounding_func, load_models, load_tokenizer
nlp = English()
tokenizer_spacy = nlp.tokenizer

def eval_ppl2(args, text_samples):
    print(f'loading from {args.model_name_or_path}')
    model = AutoModelForCausalLM.from_pretrained(
        args.model_name_or_path,  # path to the AR model trained for LMing this task.
    ).cuda()

    if 'r2l' in args.model_name_or_path:
        print('Use the right-to-left encoding.')

    args.model_path = 'predictability/diffusion_models_v6/diff_e2e-tgt_pad_rand16_transformer_' \
                      'lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart/ema_0.9999_200000.pt'
    tokenizer = load_tokenizer('e2e-tgt', 'random', os.path.split(args.model_path)[0])
    # print(args.modality, tokenizer, args.experiment)
    reverse_tokenizer = {v: k for k, v in tokenizer.items()}
    full_score = []
    for idxx, (gold, full_word_lst) in enumerate(text_samples.items()):
        # print(len(full_word_lst), full_word_lst[0])
        agg_loss = []
        for x in full_word_lst:
            # x = " ".join(x).split()
            if 'r2l' in args.model_name_or_path:
                string = ["START"] + list(reversed(x)) + ["END"]
                tokenized_x = [reverse_tokenizer.get(s, reverse_tokenizer['UNK']) for s in string]
            else:
                tokenized_x = [reverse_tokenizer['START']] + [reverse_tokenizer.get(s, reverse_tokenizer['UNK']) for s in x] \
                              + [reverse_tokenizer['END']]
            # print(tokenized_x)
            tokenized_x = torch.LongTensor(tokenized_x).cuda()
            labels = tokenized_x.clone()
            labels[labels == reverse_tokenizer['PAD']] = -100
            model_output = model(tokenized_x, labels=labels)
            # print(model_output.loss)
            # if idxx == 3:
            #     print(tokenized_x, model_output.loss.item())
            agg_loss.append(model_output.loss.item())
        example_mean_score = torch.tensor(agg_loss).mean()
        # print(f'\nthe mean loss is {example_mean_score} for index', idxx )
        full_score.append(example_mean_score)
    full_score_ = np.array(full_score).mean()
    print(f'full NLL score is {full_score_} for {len(full_score)}')
    print(f'full PPL score is {np.e ** full_score_} for {len(full_score)}')



def eval_ppl(args, text_samples):
    '''
    Evaluating using GPT2 finetuned on this task...
    :param text_lst:
    :return:
    '''

    # load model
    print(f'loading from {args.model_name_or_path}')
    model = AutoModelForCausalLM.from_pretrained(
        args.model_name_or_path,  # path to the AR model trained for LMing this task.
    ).cuda()

    # load tokenizer.
    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)

    print('finished loading models.')

    args.model_path = 'predictability/diffusion_models_v6/diff_e2e-tgt_pad_rand16_transformer_' \
                      'lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart/ema_0.9999_200000.pt'
    diff_tokenizer = load_tokenizer('e2e-tgt', 'random', os.path.split(args.model_path)[0])
    reverse_diff_tokenizer = {v: k for k, v in diff_tokenizer.items()}

    full_score = []
    for gold, full_word_lst in text_samples.items():
        agg_loss = []
        for x in full_word_lst:
            x = [kk if kk in reverse_diff_tokenizer else 'UNK' for kk in x]
            x = tokenizer.bos_token + " ".join(x) + tokenizer.eos_token
            # print(x)
            # should also add BOS EOS token?

            tokenized_x = tokenizer(x, return_tensors='pt') #[reverse_tokenizer[s] for s in x]
            input_ids = tokenized_x['input_ids'].cuda()
            labels = input_ids.clone()
            # print(tokenized_x)
            # tokenized_x = torch.LongTensor(tokenized_x).cuda()
            # labels = tokenized_x.clone()
            # labels[labels == reverse_tokenizer['PAD']] = -100
            model_output = model(input_ids, labels=labels)
            agg_loss.append(model_output.loss.item())
        example_mean_score = torch.tensor(agg_loss).mean()
        # print(f'\nthe mean loss is {example_mean_score}', )
        full_score.append(example_mean_score)
    full_score_ = np.array(full_score).mean()
    print(f'full NLL score is {full_score_} for {len(full_score)}')
    print(f'full PPL score is {np.e ** full_score_} for {len(full_score)}')


def read_files(args):
    '''
    :param args:
    :return: list of tokenized sentences.
    '''
    if args.input_format == 'file':
        text_samples = []
        if args.input_text.endswith('json'):
            with open(args.input_text, 'r') as f:
                for line in f:
                    words = [x.text for x in tokenizer_spacy(json.loads(line)[0])]
                    text_samples.append(words)
                    # text_samples.append(json.loads(line)[0].split(' '))


        else:
            with open(args.input_text, 'r') as f:
                for line in f:
                    text_samples.append(line.strip().split())

        # remove trailing PAD tokens.
        text_samples2 = []
        for sent in text_samples:
            tempsent = [x for x in sent if x != 'PAD']
            if tempsent[0] == 'START':
                tempsent = tempsent[1:]
            if tempsent[-1] == 'END':
                tempsent = tempsent[:-1]
            if tempsent[-1] == '\n' and args.mode in ['e2e-tgt-tree', 'e2e-tgt-tree-paired']:
                tempsent[-1] = '.'
            text_samples2.append(tempsent)
        return text_samples2
    elif args.input_format == 'paired':
        import ast
        # nlp = English()
        # tokenizer = nlp.tokenizer
        result_lst = defaultdict(list)

        if args.input_text.endswith('json'):
            with open(args.input_text, 'r') as f:
                for line in f:
                    try:
                        line = json.loads(line)
                    except:
                        if args.mode == 'e2e-tgt-spans-paired':
                            line = ast.literal_eval(line)
                            line = {tuple(ast.literal_eval(k[0])) : v for k, v in line.items()}
                            result_lst.update(line)
                        else:
                            line = ast.literal_eval(line)
                            result_lst.update(line)

        elif args.input_text.endswith('log'):
            with open(args.input_text, 'r') as csvfile:
                roc_reader = csv.reader(csvfile) #delimiter=' ', quotechar='|')
                for idx, row in enumerate(roc_reader):
                    if idx == 0: continue
                    if args.mode == 'e2e-tgt-spans-paired' or args.mode == 'e2e-tgt-length-paired':
                        pos = tuple(ast.literal_eval(row[0]))

                        if args.mode == 'e2e-tgt-length-paired':
                            pos = list(pos)
                            pos[0] = int(pos[0]) + 2 # because this count didn't accounted for START and END
                            pos = tuple(pos)
                    else:
                        pos = tuple(row[0].split())
                    result_lst[pos].append(row[2])

        clean_result_lst = {}
        for k, text_samples in result_lst.items():
            text_samples2 = []
            for sent in text_samples:
                sent = sent.split(' ')
                # KEY DEBUG.
                # sent = [x.text for x in tokenizer_spacy(sent)]
                # print(sent, sent2)
                # 10/0
                tempsent = [x for x in sent if x != 'PAD']
                if tempsent[0] == 'START':
                    tempsent = tempsent[1:]
                if tempsent[-1] == 'END':
                    tempsent = tempsent[:-1]
                if tempsent[-1] == '\n' and args.mode == 'e2e-tgt-tree':
                    tempsent[-1] = '.'

                # KEY DEBUG.
                tempsent = " ".join(tempsent)
                tempsent = [x.text for x in tokenizer_spacy(tempsent)]
                text_samples2.append(tempsent)
            if k[0] == 'START' and k[-1] == 'END':
                kk_ = k[1:-1]
            else:
                kk_ = k
            clean_result_lst[kk_] = text_samples2 # remove start and end from the training data.
        return clean_result_lst

def eval_parse(parser, generated, tree_vocab):
    sent_lst = []
    for sent in generated:
        # print(sent)
        input_sentence1 = benepar.InputSentence(
            words=sent,
        )
        sent_lst.append(input_sentence1)
    parse_lst = list(parser.parse_sents(sent_lst))
    # print(examples['text'][:10])
    assert len(parse_lst) == len(generated)
    # print(parse_lst[:2])
    spans_lst = []
    for parse in parse_lst:
        chart, spans = chart_from_tree(tree_vocab, parse, verbose=True)
        spans_lst.append(spans)
    return parse_lst, spans_lst

def levenshteinDistance(s1, s2):
    if len(s1) > len(s2):
        s1, s2 = s2, s1
    distances = range(len(s1) + 1)
    for i2, c2 in enumerate(s2):
        distances_ = [i2+1]
        for i1, c1 in enumerate(s1):
            if c1 == c2:
                distances_.append(distances[i1])
            else:
                distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1])))
        distances = distances_
    return distances[-1]

def score_spans(gold_spans, generated_span):
    print(gold_spans)
    print(generated_span)
    gold_spans = set([gold_spans])
    generated_span = set(generated_span)
    intersection = gold_spans.intersection(generated_span)
    print(intersection, len(intersection) / len(gold_spans))
    # union = gold_spans.union(generated_span)
    # print(len(union), len(intersection))

    # if unlabeled:
    # print(generated_span)
    # unlabeled_gold_spans = set([(a,b) for (a, b, v) in gold_spans])
    # unlabeled_generated_span =set([(a,b) for (a, b, v) in generated_span])
    # intersection = gold_spans.intersection(generated_span)
    # union = gold_spans.union(generated_span)
    return len(intersection) / len(gold_spans)

def score_tree(gold_tree, pred_trees):
    # print([x.leaves() for x in pred_trees])

    def reset_leaves(tree_):
        simple_increm = 0
        for s in tree_.subtrees(lambda t: t.height() == 2):
            s[0] = simple_increm
            s._label = 'NN'
            simple_increm += 1
        return simple_increm

    # reset.
    increm_gold = reset_leaves(gold_tree)
    # print(increm_gold)
    for i, pred in enumerate(pred_trees):
        increm_pred = reset_leaves(pred)
        # print(increm_pred, 'pred', i)

    use_evalb = True
    if use_evalb:
        # print(len(gold_tree), len(pred_trees), gold_tree)
        gold_trees = [gold_tree] * len(pred_trees)
        print(len(gold_tree.leaves()), [len(x.leaves()) for x in pred_trees])
        # print(pred_trees[0])
        dev_fscore = evaluate.evalb('diffusion_lm/misc/self-attentive-parser/EVALB',
                                    gold_trees, pred_trees)
        print(dev_fscore)

    return dev_fscore

def score_pos(gold_pos, generated_pos):
    ed = levenshteinDistance(gold_pos, generated_pos)
    return 1 - (ed / len(gold_pos))

def score_pos_em(gold_pos, generated_pos):
    # print(len(gold_pos), len(generated_pos), gold_pos, generated_pos)
    if len(generated_pos) > len(gold_pos):
        generated_pos = generated_pos[:len(gold_pos)]
    elif len(generated_pos) < len(gold_pos):
        generated_pos = generated_pos + ['PAD'] * (len(gold_pos) - len(generated_pos))
    assert len(gold_pos) == len(generated_pos)
    correct = 0
    all = 0
    for x1, x2 in zip(gold_pos, generated_pos):
        if x1 == x2:
            correct += 1
        all += 1
    return correct/all

def score_attributes(gold_att, generated):
    if gold_att in generated:
        return 1.
    else:
        return 0.

def eval_pos(tagger, generated_text):
    generated_pos = []
    for sent in generated_text:
        sent_full = " ".join(sent)
        doc = tagger(sent_full)
        generated_pos.append([token.pos_ for token in doc])
    return generated_pos

def eval_(args, text_samples):
    if args.mode == 'e2e-tgt-tree':

        parser = benepar.Parser("benepar_en3")
        tree_vocab = parser._parser.config["label_vocab"]
        if args.gold_ref == 'full':
            # toy1 = 'START Located in riverside area , Alimentum restaurant is a place to bring the whole family . \n END'.split()
            # toy1 = 'START Alimentum is not a family - friendly place , located in city centre . \n END'.split()
            toy1 = ['START', 'The', 'Vaults', 'pub', 'near', 'Café', 'Adriatic', 'has', 'a', '5', 'star', 'rating',
                    '.', 'Prices', 'start', 'at', '£', '30', '.', 'END']
            input_sentence1 = benepar.InputSentence(
                words=toy1[1:-1],
            )
            gold_parse = list(parser.parse_sents([input_sentence1]))[0]
            chart, gold_spans = chart_from_tree(tree_vocab, gold_parse, verbose=True)
            print(len(toy1[1:-1]), len(list(gold_parse.leaves())))
        elif args.gold_ref == 'span':
            # spans = [(10, 14, 'ADJP')]
            gold_spans = [(0, 4, 'S::VP')]
            gold_spans = [(0, 0, 'NP')]
            gold_spans = [(9, 13, 'ADJP')]
            # gold_spans = [(9, 13, 'PP')]

        print(text_samples[:1])
        # correct for length:
        target_len = len(gold_parse.leaves())
        print(gold_parse.leaves(), 'target')
        for i, x in enumerate(text_samples):
            if len(x) == target_len:
                continue
            elif len(x) > target_len:
                text_samples[i] = x[:target_len]
            else:
                print('padded to same length', (target_len-len(x)))
                text_samples[i] = x + ['.'] * (target_len-len(x))
                # print(text_samples[i])
                # print('SAD, our model is shorter??')
        generated_parse, generated_span = eval_parse(parser, text_samples, tree_vocab)
        # print(gold_spans)
        # print(generated_span[:2])
        evalb_score = score_tree(gold_parse, generated_parse)
        print([len(x) for x in text_samples])
        score_lst = []
        for x in generated_span:
            score_lst.append(score_spans(gold_spans, x))

        print(np.array(score_lst).mean())
    elif args.mode == 'e2e-tgt-pos':
        tagger = spacy_stanza.load_pipeline("en", processors='tokenize,mwt,pos', ) #processors={"tokenize": "spacy",}
        if args.gold_ref == 'full':
            toy1 = 'START The Mill is a coffee shop with an expensive menu near The Sorrento . \n END'.split()
            toy1 = ['START', 'The', 'Vaults', 'pub', 'near', 'Café', 'Adriatic', 'has', 'a', '5', 'star', 'rating', '.',
                    'Prices', 'start', 'at', '£', '30', '.', '\n', 'END']
            sent_full = " ".join(toy1[1:-1])
            doc = tagger(sent_full)
            gold_pos = [token.pos_ for token in doc]
        elif args.gold_ref == 'span':
            gold_pos = [(9, 'PROPN')]

        generated_pos = eval_pos(tagger, text_samples)
        score_lst = []
        score_lst2 = []
        for x in generated_pos:
            print(gold_pos)
            print(x)
            print()
            score_lst.append(score_pos(gold_pos, x))
            score_lst2.append(score_pos_em(gold_pos, x))

        print(np.array(score_lst).mean())
        print(np.array(score_lst2).mean())
    elif args.mode == 'e2e-tgt-pos-paired':
        import stanza
        nlp = spacy_stanza.load_pipeline("en", processors={"tokenize": "spacy"})
        print(nlp)
        # nlp = stanza.Pipeline("en", processors={"tokenize": "spacy", 'pos': 'combined'}, package=None)

        full_score = []
        for gold, full_word_lst in text_samples.items():
            print(gold, len(full_word_lst), full_word_lst[:2])
            # full_word_lst = full_word_lst[:2]
            sent_lst = [" ".join(seq) for seq in full_word_lst]
            sent_full = " ".join(sent_lst)
            # print(sent_lst)
            try:
                doc = nlp(sent_full)
                doc_token_pos = [(token.text, token.pos_,) for token in doc]
                len_lst = [len(seq) for seq in full_word_lst]
                print(sum(len_lst), len(doc_token_pos), 'should be equal!!! ')
                assert sum(len_lst) == len(doc_token_pos)
                pos_lst = []
                init_idx = 0
                for len_temp in len_lst:
                    pos_lst.append([x[1] for x in doc_token_pos[init_idx:init_idx + len_temp]])
                    init_idx = init_idx + len_temp

            except:
                print(f'stanza pipeline failed... for this {gold}')

                # parse each sentence separately...
                pos_lst = []
                for single_sent in sent_lst:
                    doc = nlp(single_sent)
                    # doc_token_pos = [(token.text, token.pos_,) for token in doc]
                    pos_lst.append([ token.pos_ for token in doc])


            score_lst = []
            score_lst2 = []
            for x in pos_lst:
                score_lst.append(score_pos(gold, x))
                score_lst2.append(score_pos_em(gold, x))
            score_ed = np.array(score_lst).mean()
            score_em = np.array(score_lst2).mean()
            print(len(score_lst), score_ed, score_em)
            full_score.append(score_em)
        full_score_em = np.array(full_score).mean()
        print(full_score_em, f"\pm {np.array(full_score).std()}", len(full_score))

    if args.mode == 'e2e-tgt-tree-paired':

        parser = benepar.Parser("benepar_en3")
        tree_vocab = parser._parser.config["label_vocab"]

        full_score = []
        for idx, (gold_parse, full_word_lst) in enumerate(text_samples.items()):
            # to avoid evalb complain --> change \n to .
            gold_parse_str = gold_parse[0]
            gold_parse_str = gold_parse_str.replace('\n', '.')
            # print([gold_parse_str], 'gold tree string ')
            gold_parse = Tree.fromstring(gold_parse_str)
            target_len = len(gold_parse.leaves())
            # print(gold_parse.leaves(), 'target')
            # print(full_word_lst)
            for i, x in enumerate(full_word_lst):
                if len(x) == target_len:
                    continue
                elif len(x) > target_len:
                    print('generated seq is longer than gold seq')
                    full_word_lst[i] = x[:target_len]
                else:
                    print('padded to same length', (target_len - len(x)))
                    full_word_lst[i] = x + ['.'] * (target_len - len(x))
                    # print(text_samples[i])
                    # print('SAD, our model is shorter??')
            generated_parse, generated_span = eval_parse(parser, full_word_lst, tree_vocab)
            evalb_score = score_tree(gold_parse, generated_parse) # inputs are nltk.Tree
            # print(type(evalb_score))
            print(evalb_score.fscore)
            full_score.append(evalb_score.fscore)
        full_score_f1 = np.array(full_score).mean()
        # print(full_score_f1, len(full_score))
        print(full_score_f1, f"\pm {np.array(full_score).std()}", len(full_score))

    elif args.mode == 'e2e-tgt-spans-paired':

        parser = benepar.Parser("benepar_en3")
        tree_vocab = parser._parser.config["label_vocab"]

        full_score = []
        for idx, (gold_spans, full_word_lst) in enumerate(text_samples.items()):
            # to avoid evalb complain --> change \n to .
            print(gold_spans, '11 gold')
            generated_parse, generated_span = eval_parse(parser, full_word_lst, tree_vocab)
            score_lst = []
            for x in generated_span:
                score_lst.append(score_spans(gold_spans, x))
            print(score_lst)
            score_lst_mean = np.array(score_lst).mean()
            full_score.append(score_lst_mean)
        full_score_span = np.array(full_score).mean()
        print(full_score_span, f"\pm {np.array(full_score).std()}", len(full_score))

    if args.mode == 'e2e-tgt-attribute-paired':

        full_score = []
        for idx, (attribute, full_word_lst) in enumerate(text_samples.items()):
            # print(attribute)
            attribute = " ".join(attribute).split(':')[1].strip()
            gold_attribute = attribute
            score_lst = []
            for i, x in enumerate(full_word_lst):
                # print(gold_attribute, x)
                score_lst.append(score_attributes(gold_attribute, " ".join(x)))
            score_lst_mean = np.array(score_lst).mean()
            full_score.append(score_lst_mean)
        full_score_mean = np.array(full_score).mean()
        # print(full_score_mean, len(full_score))
        print(full_score_mean, f"\pm {np.array(full_score).std()}", len(full_score))

    if args.mode == 'e2e-tgt-length-paired':

        full_score = []
        for idx, (attribute, full_word_lst) in enumerate(text_samples.items()):
            tgt_len = int(attribute[0]) - 2 # remove START and END.
            score_lst = []
            for i, x in enumerate(full_word_lst):
                if tgt_len == len(x):
                # if np.abs(tgt_len - len(x)) <= 2:
                    score_lst.append(1.)
                else:
                    score_lst.append(0.)
            score_lst_mean = np.array(score_lst).mean()
            full_score.append(score_lst_mean)
        full_score_mean = np.array(full_score).mean()
        # print(full_score_mean, len(full_score))
        print(full_score_mean, f"\pm {np.array(full_score).std()}", len(full_score))

    elif args.mode == 'e2e-tgt-attribute':
        gold_attribute = ""
        score_lst = []
        for x in text_samples:
            score_lst.append(score_attributes(gold_attribute, x))
        print(np.array(score_lst).mean())

if __name__ == '__main__':

    # 'diffusion_lm/improved_diffusion/out_gen/diff_e2e-tgt_pad_rand16_transformer_lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart.ema_0.9999_200000.pt.infill_control_tree_50x64x16_tree_partial-cat-lgv0.1.json'
    parser = argparse.ArgumentParser(description='training args.')
    parser.add_argument('--input_text', type=str, default='diffusion_lm/improved_diffusion/out_gen/diff_e2e-tgt_pad_rand16_transformer_lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart.ema_0.9999_200000.pt.'
                                                          'infill_control_tree_50x64x16_tree_partial-cat-lgv0.1.json',)
    parser.add_argument('--input_format', type=str, default='batch', help='wp, wikitext')

    parser.add_argument('--mode', type=str, default='e2e-tgt-tree', help='')
    parser.add_argument('--gold_ref', type=str, default='full', help='')
    parser.add_argument('--model_name_or_path', type=str, default='predictability/diff_models/e2e-tgt_e=20_b=64_m=gpt2_wikitext-103-raw-v1_101_wp_finetune_UNK', help='')
                        # default='predictability/diff_models/e2e-tgt_e=6_b=10_m=gpt2_wikitext-103-raw-v1_101_wp_pad', help='')
    


    args = parser.parse_args()
    text_samples = read_files(args)
    eval_(args, text_samples)
    eval_ppl(args, text_samples)
    # eval_ppl2(args, text_samples)