Spaces:
Running
Running
File size: 23,825 Bytes
7dd9869 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
import torch, argparse, json
import benepar, spacy_stanza
import numpy as np
import sys, os
import csv
from nltk.tree import Tree
sys.path.insert(0, os.path.join(sys.path[0], '../scripts/'))
from tree_helper import chart_from_tree, pad_charts, padded_chart_from_spans
sys.path.insert(0, os.path.join(sys.path[0], '../../misc/self-attentive-parser/src/'))
import evaluate
from spacy.lang.en import English
from collections import defaultdict
from transformers import AutoModelForCausalLM, AutoTokenizer
from improved_diffusion.rounding import rounding_func, load_models, load_tokenizer
nlp = English()
tokenizer_spacy = nlp.tokenizer
def eval_ppl2(args, text_samples):
print(f'loading from {args.model_name_or_path}')
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path, # path to the AR model trained for LMing this task.
).cuda()
if 'r2l' in args.model_name_or_path:
print('Use the right-to-left encoding.')
args.model_path = 'predictability/diffusion_models_v6/diff_e2e-tgt_pad_rand16_transformer_' \
'lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart/ema_0.9999_200000.pt'
tokenizer = load_tokenizer('e2e-tgt', 'random', os.path.split(args.model_path)[0])
# print(args.modality, tokenizer, args.experiment)
reverse_tokenizer = {v: k for k, v in tokenizer.items()}
full_score = []
for idxx, (gold, full_word_lst) in enumerate(text_samples.items()):
# print(len(full_word_lst), full_word_lst[0])
agg_loss = []
for x in full_word_lst:
# x = " ".join(x).split()
if 'r2l' in args.model_name_or_path:
string = ["START"] + list(reversed(x)) + ["END"]
tokenized_x = [reverse_tokenizer.get(s, reverse_tokenizer['UNK']) for s in string]
else:
tokenized_x = [reverse_tokenizer['START']] + [reverse_tokenizer.get(s, reverse_tokenizer['UNK']) for s in x] \
+ [reverse_tokenizer['END']]
# print(tokenized_x)
tokenized_x = torch.LongTensor(tokenized_x).cuda()
labels = tokenized_x.clone()
labels[labels == reverse_tokenizer['PAD']] = -100
model_output = model(tokenized_x, labels=labels)
# print(model_output.loss)
# if idxx == 3:
# print(tokenized_x, model_output.loss.item())
agg_loss.append(model_output.loss.item())
example_mean_score = torch.tensor(agg_loss).mean()
# print(f'\nthe mean loss is {example_mean_score} for index', idxx )
full_score.append(example_mean_score)
full_score_ = np.array(full_score).mean()
print(f'full NLL score is {full_score_} for {len(full_score)}')
print(f'full PPL score is {np.e ** full_score_} for {len(full_score)}')
def eval_ppl(args, text_samples):
'''
Evaluating using GPT2 finetuned on this task...
:param text_lst:
:return:
'''
# load model
print(f'loading from {args.model_name_or_path}')
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path, # path to the AR model trained for LMing this task.
).cuda()
# load tokenizer.
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
print('finished loading models.')
args.model_path = 'predictability/diffusion_models_v6/diff_e2e-tgt_pad_rand16_transformer_' \
'lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart/ema_0.9999_200000.pt'
diff_tokenizer = load_tokenizer('e2e-tgt', 'random', os.path.split(args.model_path)[0])
reverse_diff_tokenizer = {v: k for k, v in diff_tokenizer.items()}
full_score = []
for gold, full_word_lst in text_samples.items():
agg_loss = []
for x in full_word_lst:
x = [kk if kk in reverse_diff_tokenizer else 'UNK' for kk in x]
x = tokenizer.bos_token + " ".join(x) + tokenizer.eos_token
# print(x)
# should also add BOS EOS token?
tokenized_x = tokenizer(x, return_tensors='pt') #[reverse_tokenizer[s] for s in x]
input_ids = tokenized_x['input_ids'].cuda()
labels = input_ids.clone()
# print(tokenized_x)
# tokenized_x = torch.LongTensor(tokenized_x).cuda()
# labels = tokenized_x.clone()
# labels[labels == reverse_tokenizer['PAD']] = -100
model_output = model(input_ids, labels=labels)
agg_loss.append(model_output.loss.item())
example_mean_score = torch.tensor(agg_loss).mean()
# print(f'\nthe mean loss is {example_mean_score}', )
full_score.append(example_mean_score)
full_score_ = np.array(full_score).mean()
print(f'full NLL score is {full_score_} for {len(full_score)}')
print(f'full PPL score is {np.e ** full_score_} for {len(full_score)}')
def read_files(args):
'''
:param args:
:return: list of tokenized sentences.
'''
if args.input_format == 'file':
text_samples = []
if args.input_text.endswith('json'):
with open(args.input_text, 'r') as f:
for line in f:
words = [x.text for x in tokenizer_spacy(json.loads(line)[0])]
text_samples.append(words)
# text_samples.append(json.loads(line)[0].split(' '))
else:
with open(args.input_text, 'r') as f:
for line in f:
text_samples.append(line.strip().split())
# remove trailing PAD tokens.
text_samples2 = []
for sent in text_samples:
tempsent = [x for x in sent if x != 'PAD']
if tempsent[0] == 'START':
tempsent = tempsent[1:]
if tempsent[-1] == 'END':
tempsent = tempsent[:-1]
if tempsent[-1] == '\n' and args.mode in ['e2e-tgt-tree', 'e2e-tgt-tree-paired']:
tempsent[-1] = '.'
text_samples2.append(tempsent)
return text_samples2
elif args.input_format == 'paired':
import ast
# nlp = English()
# tokenizer = nlp.tokenizer
result_lst = defaultdict(list)
if args.input_text.endswith('json'):
with open(args.input_text, 'r') as f:
for line in f:
try:
line = json.loads(line)
except:
if args.mode == 'e2e-tgt-spans-paired':
line = ast.literal_eval(line)
line = {tuple(ast.literal_eval(k[0])) : v for k, v in line.items()}
result_lst.update(line)
else:
line = ast.literal_eval(line)
result_lst.update(line)
elif args.input_text.endswith('log'):
with open(args.input_text, 'r') as csvfile:
roc_reader = csv.reader(csvfile) #delimiter=' ', quotechar='|')
for idx, row in enumerate(roc_reader):
if idx == 0: continue
if args.mode == 'e2e-tgt-spans-paired' or args.mode == 'e2e-tgt-length-paired':
pos = tuple(ast.literal_eval(row[0]))
if args.mode == 'e2e-tgt-length-paired':
pos = list(pos)
pos[0] = int(pos[0]) + 2 # because this count didn't accounted for START and END
pos = tuple(pos)
else:
pos = tuple(row[0].split())
result_lst[pos].append(row[2])
clean_result_lst = {}
for k, text_samples in result_lst.items():
text_samples2 = []
for sent in text_samples:
sent = sent.split(' ')
# KEY DEBUG.
# sent = [x.text for x in tokenizer_spacy(sent)]
# print(sent, sent2)
# 10/0
tempsent = [x for x in sent if x != 'PAD']
if tempsent[0] == 'START':
tempsent = tempsent[1:]
if tempsent[-1] == 'END':
tempsent = tempsent[:-1]
if tempsent[-1] == '\n' and args.mode == 'e2e-tgt-tree':
tempsent[-1] = '.'
# KEY DEBUG.
tempsent = " ".join(tempsent)
tempsent = [x.text for x in tokenizer_spacy(tempsent)]
text_samples2.append(tempsent)
if k[0] == 'START' and k[-1] == 'END':
kk_ = k[1:-1]
else:
kk_ = k
clean_result_lst[kk_] = text_samples2 # remove start and end from the training data.
return clean_result_lst
def eval_parse(parser, generated, tree_vocab):
sent_lst = []
for sent in generated:
# print(sent)
input_sentence1 = benepar.InputSentence(
words=sent,
)
sent_lst.append(input_sentence1)
parse_lst = list(parser.parse_sents(sent_lst))
# print(examples['text'][:10])
assert len(parse_lst) == len(generated)
# print(parse_lst[:2])
spans_lst = []
for parse in parse_lst:
chart, spans = chart_from_tree(tree_vocab, parse, verbose=True)
spans_lst.append(spans)
return parse_lst, spans_lst
def levenshteinDistance(s1, s2):
if len(s1) > len(s2):
s1, s2 = s2, s1
distances = range(len(s1) + 1)
for i2, c2 in enumerate(s2):
distances_ = [i2+1]
for i1, c1 in enumerate(s1):
if c1 == c2:
distances_.append(distances[i1])
else:
distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1])))
distances = distances_
return distances[-1]
def score_spans(gold_spans, generated_span):
print(gold_spans)
print(generated_span)
gold_spans = set([gold_spans])
generated_span = set(generated_span)
intersection = gold_spans.intersection(generated_span)
print(intersection, len(intersection) / len(gold_spans))
# union = gold_spans.union(generated_span)
# print(len(union), len(intersection))
# if unlabeled:
# print(generated_span)
# unlabeled_gold_spans = set([(a,b) for (a, b, v) in gold_spans])
# unlabeled_generated_span =set([(a,b) for (a, b, v) in generated_span])
# intersection = gold_spans.intersection(generated_span)
# union = gold_spans.union(generated_span)
return len(intersection) / len(gold_spans)
def score_tree(gold_tree, pred_trees):
# print([x.leaves() for x in pred_trees])
def reset_leaves(tree_):
simple_increm = 0
for s in tree_.subtrees(lambda t: t.height() == 2):
s[0] = simple_increm
s._label = 'NN'
simple_increm += 1
return simple_increm
# reset.
increm_gold = reset_leaves(gold_tree)
# print(increm_gold)
for i, pred in enumerate(pred_trees):
increm_pred = reset_leaves(pred)
# print(increm_pred, 'pred', i)
use_evalb = True
if use_evalb:
# print(len(gold_tree), len(pred_trees), gold_tree)
gold_trees = [gold_tree] * len(pred_trees)
print(len(gold_tree.leaves()), [len(x.leaves()) for x in pred_trees])
# print(pred_trees[0])
dev_fscore = evaluate.evalb('diffusion_lm/misc/self-attentive-parser/EVALB',
gold_trees, pred_trees)
print(dev_fscore)
return dev_fscore
def score_pos(gold_pos, generated_pos):
ed = levenshteinDistance(gold_pos, generated_pos)
return 1 - (ed / len(gold_pos))
def score_pos_em(gold_pos, generated_pos):
# print(len(gold_pos), len(generated_pos), gold_pos, generated_pos)
if len(generated_pos) > len(gold_pos):
generated_pos = generated_pos[:len(gold_pos)]
elif len(generated_pos) < len(gold_pos):
generated_pos = generated_pos + ['PAD'] * (len(gold_pos) - len(generated_pos))
assert len(gold_pos) == len(generated_pos)
correct = 0
all = 0
for x1, x2 in zip(gold_pos, generated_pos):
if x1 == x2:
correct += 1
all += 1
return correct/all
def score_attributes(gold_att, generated):
if gold_att in generated:
return 1.
else:
return 0.
def eval_pos(tagger, generated_text):
generated_pos = []
for sent in generated_text:
sent_full = " ".join(sent)
doc = tagger(sent_full)
generated_pos.append([token.pos_ for token in doc])
return generated_pos
def eval_(args, text_samples):
if args.mode == 'e2e-tgt-tree':
parser = benepar.Parser("benepar_en3")
tree_vocab = parser._parser.config["label_vocab"]
if args.gold_ref == 'full':
# toy1 = 'START Located in riverside area , Alimentum restaurant is a place to bring the whole family . \n END'.split()
# toy1 = 'START Alimentum is not a family - friendly place , located in city centre . \n END'.split()
toy1 = ['START', 'The', 'Vaults', 'pub', 'near', 'Café', 'Adriatic', 'has', 'a', '5', 'star', 'rating',
'.', 'Prices', 'start', 'at', '£', '30', '.', 'END']
input_sentence1 = benepar.InputSentence(
words=toy1[1:-1],
)
gold_parse = list(parser.parse_sents([input_sentence1]))[0]
chart, gold_spans = chart_from_tree(tree_vocab, gold_parse, verbose=True)
print(len(toy1[1:-1]), len(list(gold_parse.leaves())))
elif args.gold_ref == 'span':
# spans = [(10, 14, 'ADJP')]
gold_spans = [(0, 4, 'S::VP')]
gold_spans = [(0, 0, 'NP')]
gold_spans = [(9, 13, 'ADJP')]
# gold_spans = [(9, 13, 'PP')]
print(text_samples[:1])
# correct for length:
target_len = len(gold_parse.leaves())
print(gold_parse.leaves(), 'target')
for i, x in enumerate(text_samples):
if len(x) == target_len:
continue
elif len(x) > target_len:
text_samples[i] = x[:target_len]
else:
print('padded to same length', (target_len-len(x)))
text_samples[i] = x + ['.'] * (target_len-len(x))
# print(text_samples[i])
# print('SAD, our model is shorter??')
generated_parse, generated_span = eval_parse(parser, text_samples, tree_vocab)
# print(gold_spans)
# print(generated_span[:2])
evalb_score = score_tree(gold_parse, generated_parse)
print([len(x) for x in text_samples])
score_lst = []
for x in generated_span:
score_lst.append(score_spans(gold_spans, x))
print(np.array(score_lst).mean())
elif args.mode == 'e2e-tgt-pos':
tagger = spacy_stanza.load_pipeline("en", processors='tokenize,mwt,pos', ) #processors={"tokenize": "spacy",}
if args.gold_ref == 'full':
toy1 = 'START The Mill is a coffee shop with an expensive menu near The Sorrento . \n END'.split()
toy1 = ['START', 'The', 'Vaults', 'pub', 'near', 'Café', 'Adriatic', 'has', 'a', '5', 'star', 'rating', '.',
'Prices', 'start', 'at', '£', '30', '.', '\n', 'END']
sent_full = " ".join(toy1[1:-1])
doc = tagger(sent_full)
gold_pos = [token.pos_ for token in doc]
elif args.gold_ref == 'span':
gold_pos = [(9, 'PROPN')]
generated_pos = eval_pos(tagger, text_samples)
score_lst = []
score_lst2 = []
for x in generated_pos:
print(gold_pos)
print(x)
print()
score_lst.append(score_pos(gold_pos, x))
score_lst2.append(score_pos_em(gold_pos, x))
print(np.array(score_lst).mean())
print(np.array(score_lst2).mean())
elif args.mode == 'e2e-tgt-pos-paired':
import stanza
nlp = spacy_stanza.load_pipeline("en", processors={"tokenize": "spacy"})
print(nlp)
# nlp = stanza.Pipeline("en", processors={"tokenize": "spacy", 'pos': 'combined'}, package=None)
full_score = []
for gold, full_word_lst in text_samples.items():
print(gold, len(full_word_lst), full_word_lst[:2])
# full_word_lst = full_word_lst[:2]
sent_lst = [" ".join(seq) for seq in full_word_lst]
sent_full = " ".join(sent_lst)
# print(sent_lst)
try:
doc = nlp(sent_full)
doc_token_pos = [(token.text, token.pos_,) for token in doc]
len_lst = [len(seq) for seq in full_word_lst]
print(sum(len_lst), len(doc_token_pos), 'should be equal!!! ')
assert sum(len_lst) == len(doc_token_pos)
pos_lst = []
init_idx = 0
for len_temp in len_lst:
pos_lst.append([x[1] for x in doc_token_pos[init_idx:init_idx + len_temp]])
init_idx = init_idx + len_temp
except:
print(f'stanza pipeline failed... for this {gold}')
# parse each sentence separately...
pos_lst = []
for single_sent in sent_lst:
doc = nlp(single_sent)
# doc_token_pos = [(token.text, token.pos_,) for token in doc]
pos_lst.append([ token.pos_ for token in doc])
score_lst = []
score_lst2 = []
for x in pos_lst:
score_lst.append(score_pos(gold, x))
score_lst2.append(score_pos_em(gold, x))
score_ed = np.array(score_lst).mean()
score_em = np.array(score_lst2).mean()
print(len(score_lst), score_ed, score_em)
full_score.append(score_em)
full_score_em = np.array(full_score).mean()
print(full_score_em, f"\pm {np.array(full_score).std()}", len(full_score))
if args.mode == 'e2e-tgt-tree-paired':
parser = benepar.Parser("benepar_en3")
tree_vocab = parser._parser.config["label_vocab"]
full_score = []
for idx, (gold_parse, full_word_lst) in enumerate(text_samples.items()):
# to avoid evalb complain --> change \n to .
gold_parse_str = gold_parse[0]
gold_parse_str = gold_parse_str.replace('\n', '.')
# print([gold_parse_str], 'gold tree string ')
gold_parse = Tree.fromstring(gold_parse_str)
target_len = len(gold_parse.leaves())
# print(gold_parse.leaves(), 'target')
# print(full_word_lst)
for i, x in enumerate(full_word_lst):
if len(x) == target_len:
continue
elif len(x) > target_len:
print('generated seq is longer than gold seq')
full_word_lst[i] = x[:target_len]
else:
print('padded to same length', (target_len - len(x)))
full_word_lst[i] = x + ['.'] * (target_len - len(x))
# print(text_samples[i])
# print('SAD, our model is shorter??')
generated_parse, generated_span = eval_parse(parser, full_word_lst, tree_vocab)
evalb_score = score_tree(gold_parse, generated_parse) # inputs are nltk.Tree
# print(type(evalb_score))
print(evalb_score.fscore)
full_score.append(evalb_score.fscore)
full_score_f1 = np.array(full_score).mean()
# print(full_score_f1, len(full_score))
print(full_score_f1, f"\pm {np.array(full_score).std()}", len(full_score))
elif args.mode == 'e2e-tgt-spans-paired':
parser = benepar.Parser("benepar_en3")
tree_vocab = parser._parser.config["label_vocab"]
full_score = []
for idx, (gold_spans, full_word_lst) in enumerate(text_samples.items()):
# to avoid evalb complain --> change \n to .
print(gold_spans, '11 gold')
generated_parse, generated_span = eval_parse(parser, full_word_lst, tree_vocab)
score_lst = []
for x in generated_span:
score_lst.append(score_spans(gold_spans, x))
print(score_lst)
score_lst_mean = np.array(score_lst).mean()
full_score.append(score_lst_mean)
full_score_span = np.array(full_score).mean()
print(full_score_span, f"\pm {np.array(full_score).std()}", len(full_score))
if args.mode == 'e2e-tgt-attribute-paired':
full_score = []
for idx, (attribute, full_word_lst) in enumerate(text_samples.items()):
# print(attribute)
attribute = " ".join(attribute).split(':')[1].strip()
gold_attribute = attribute
score_lst = []
for i, x in enumerate(full_word_lst):
# print(gold_attribute, x)
score_lst.append(score_attributes(gold_attribute, " ".join(x)))
score_lst_mean = np.array(score_lst).mean()
full_score.append(score_lst_mean)
full_score_mean = np.array(full_score).mean()
# print(full_score_mean, len(full_score))
print(full_score_mean, f"\pm {np.array(full_score).std()}", len(full_score))
if args.mode == 'e2e-tgt-length-paired':
full_score = []
for idx, (attribute, full_word_lst) in enumerate(text_samples.items()):
tgt_len = int(attribute[0]) - 2 # remove START and END.
score_lst = []
for i, x in enumerate(full_word_lst):
if tgt_len == len(x):
# if np.abs(tgt_len - len(x)) <= 2:
score_lst.append(1.)
else:
score_lst.append(0.)
score_lst_mean = np.array(score_lst).mean()
full_score.append(score_lst_mean)
full_score_mean = np.array(full_score).mean()
# print(full_score_mean, len(full_score))
print(full_score_mean, f"\pm {np.array(full_score).std()}", len(full_score))
elif args.mode == 'e2e-tgt-attribute':
gold_attribute = ""
score_lst = []
for x in text_samples:
score_lst.append(score_attributes(gold_attribute, x))
print(np.array(score_lst).mean())
if __name__ == '__main__':
# 'diffusion_lm/improved_diffusion/out_gen/diff_e2e-tgt_pad_rand16_transformer_lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart.ema_0.9999_200000.pt.infill_control_tree_50x64x16_tree_partial-cat-lgv0.1.json'
parser = argparse.ArgumentParser(description='training args.')
parser.add_argument('--input_text', type=str, default='diffusion_lm/improved_diffusion/out_gen/diff_e2e-tgt_pad_rand16_transformer_lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart.ema_0.9999_200000.pt.'
'infill_control_tree_50x64x16_tree_partial-cat-lgv0.1.json',)
parser.add_argument('--input_format', type=str, default='batch', help='wp, wikitext')
parser.add_argument('--mode', type=str, default='e2e-tgt-tree', help='')
parser.add_argument('--gold_ref', type=str, default='full', help='')
parser.add_argument('--model_name_or_path', type=str, default='predictability/diff_models/e2e-tgt_e=20_b=64_m=gpt2_wikitext-103-raw-v1_101_wp_finetune_UNK', help='')
# default='predictability/diff_models/e2e-tgt_e=6_b=10_m=gpt2_wikitext-103-raw-v1_101_wp_pad', help='')
args = parser.parse_args()
text_samples = read_files(args)
eval_(args, text_samples)
eval_ppl(args, text_samples)
# eval_ppl2(args, text_samples)
|