File size: 5,044 Bytes
7dd9869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os, sys, glob
# full_lst = glob.glob('diff_models_synth128*')
# full_lst = glob.glob('diff_models_synth32*')
# full_lst = glob.glob('diff_models_synth32_3_rand16*')
# full_lst = glob.glob('diff_models_synth_rand_16_trans_lr_1e-5_long_Lsimple')
full_lst = glob.glob(sys.argv[1])
top_p = -1.0 if len(sys.argv) < 2 else sys.argv[2]
print(f'top_p = {top_p}')
pattern_ = 'model' if len(sys.argv) < 3 else sys.argv[3]
print(f'pattern_ = {pattern_}', sys.argv[3])
# print(full_lst)

output_lst = []
for lst in full_lst:
    print(lst)
    try:
        tgt = sorted(glob.glob(f"{lst}/{pattern_}*pt"))[-1]
        lst = os.path.split(lst)[1]
        print(lst)
        num = 1
    except:
        continue
    model_arch_ = lst.split('_')[5-num]
    model_arch = 'conv-unet' if 'conv-unet' in lst else 'transformer'
    mode =  'image' if ('conv' in model_arch ) else 'text' #or '1d-unet' in model_arch_
    print(mode, model_arch_)
    dim_ =lst.split('_')[4-num]

    # diffusion_steps= 4000
    # noise_schedule = 'cosine'
    # dim = dim_.split('rand')[1]

    if 'synth' in lst:
        modality = 'synth'
    elif 'pos' in lst:
        modality = 'pos'
    elif 'image' in lst:
        modality = 'image'
    elif 'roc' in lst:
        modality = 'roc'
    elif 'e2e-tgt' in lst:
        modality = 'e2e-tgt'
    elif 'simple-wiki' in lst:
        modality = 'simple-wiki'
    elif 'book' in lst:
        modality = 'book'
    elif 'yelp' in lst:
        modality = 'yelp'
    elif 'commonGen' in lst:
        modality = 'commonGen'
    elif 'e2e' in lst:
        modality = 'e2e'


    if 'synth32' in lst:
        kk = 32
    elif 'synth128' in lst:
        kk = 128

    try:
        diffusion_steps = int(lst.split('_')[7-num])
        print(diffusion_steps)
    except:
        diffusion_steps = 4000
    try:
        noise_schedule = lst.split('_')[8-num]
        assert  noise_schedule in ['cosine', 'linear']
        print(noise_schedule)
    except:
        noise_schedule = 'cosine'
    try:
        dim = int(dim_.split('rand')[1])
    except:
        dim =lst.split('_')[4-num]
    try:
        print(len(lst.split('_')))
        num_channels =  int(lst.split('_')[-1].split('h')[1])
    except:
        num_channels = 128

    print(tgt, model_arch, dim, num_channels)
    # out_dir = 'diffusion_lm/improved_diffusion/out_gen_large_nucleus'
    # num_samples = 512

    # out_dir = 'diffusion_lm/improved_diffusion/out_gen_v2_nucleus'

    out_dir = 'generation_outputs'
    num_samples = 50

    if modality == 'e2e':
        num_samples = 547

    COMMAND = f'python scripts/{mode}_sample.py ' \
    f'--model_path {tgt} --batch_size 50 --num_samples {num_samples} --top_p {top_p} ' \
    f'--out_dir {out_dir} '
    print(COMMAND)
    # os.system(COMMAND)

    # shape_str = "x".join([str(x) for x in arr.shape])
    model_base_name = os.path.basename(os.path.split(tgt)[0]) + f'.{os.path.split(tgt)[1]}'
    if modality == 'e2e-tgt' or modality == 'e2e':
        out_path2 = os.path.join(out_dir, f"{model_base_name}.samples_{top_p}.json")
    else:
        out_path2 =  os.path.join(out_dir, f"{model_base_name}.samples_{top_p}.txt")
    output_cands = glob.glob(out_path2)
    print(out_path2, output_cands)
    if len(output_cands) > 0:
        out_path2 = glob.glob(out_path2)[0]
    else:
        os.system(COMMAND)
        out_path2 = glob.glob(out_path2)[0]

    output_lst.append(out_path2)

    if modality == 'pos':
        model_name_path = 'predictability/diff_models/pos_e=15_b=20_m=gpt2_wikitext-103-raw-v1_s=102'
    elif modality == 'synth':
        if kk == 128:
            model_name_path = 'predictability/diff_models/synth_e=15_b=10_m=gpt2_wikitext-103-raw-v1_None'
        else:
            model_name_path = 'predictability/diff_models/synth_e=15_b=20_m=gpt2_wikitext-103-raw-v1_None'
    elif modality == 'e2e-tgt':
        model_name_path = "predictability/diff_models/e2e-tgt_e=15_b=20_m=gpt2_wikitext-103-raw-v1_101_None"
    elif modality == 'roc':
        model_name_path = "predictability/diff_models/roc_e=6_b=10_m=gpt2_wikitext-103-raw-v1_101_wp_pad_v1"
    elif modality == 'e2e':
        COMMAND1 = f"python diffusion_lm/e2e_data/mbr.py {out_path2}"

        os.system(COMMAND1)
        COMMAND2 = f"python e2e-metrics/measure_scores.py " \
                   f"diffusion_lm/improved_diffusion/out_gen_v2_dropout2/1_valid_gold  " \
                   f"{out_path2}.clean -p  -t -H > {os.path.join(os.path.split(tgt)[0], 'e2e_valid_eval.txt')}"
        print(COMMAND2)
        os.system(COMMAND2)
        continue
    else:
        print('not trained a AR model yet... only look at the output plz.')
        continue
    COMMAND = f"python scripts/ppl_under_ar.py " \
              f"--model_path {tgt} " \
              f"--modality {modality}  --experiment random " \
              f"--model_name_or_path {model_name_path} " \
              f"--input_text {out_path2}  --mode eval"

    print(COMMAND)
    print()
    os.system(COMMAND)
print('output lists:')
print("\n".join(output_lst))