File size: 8,534 Bytes
7dd9869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import torch
import random
import selfies as sf
from transformers import AutoTokenizer


################################
def getrandomnumber(numbers, k, weights=None):
    if k == 1:
        return random.choices(numbers, weights=weights, k=k)[0]
    else:
        return random.choices(numbers, weights=weights, k=k)


# simple smiles tokenizer
# treat every charater as token
def build_simple_smiles_vocab(dir):
    assert dir is not None, "dir and smiles_vocab can not be None at the same time."
    if not os.path.exists(os.path.join(dir, "simple_smiles_tokenizer_vocab.txt")):
        # print('Generating Vocabulary for {} ...'.format(dir))
        dirs = list(
            os.path.join(dir, i) for i in ["train.txt", "validation.txt", "test.txt"]
        )
        smiles = []
        for idir in dirs:
            with open(idir, "r") as f:
                for i, line in enumerate(f):
                    if i == 0:
                        continue
                    line = line.split("\t")
                    assert len(line) == 3, "Dataset format error."
                    if line[1] != "*":
                        smiles.append(line[1].strip())
        char_set = set()
        for smi in smiles:
            for c in smi:
                char_set.add(c)
        vocabstring = "".join(char_set)
        with open(os.path.join(dir, "simple_smiles_tokenizer_vocab.txt"), "w") as f:
            f.write(os.path.join(vocabstring))
        return vocabstring
    else:
        print("Reading in Vocabulary...")
        with open(os.path.join(dir, "simple_smiles_tokenizer_vocab.txt"), "r") as f:
            vocabstring = f.readline().strip()
        return vocabstring


class Tokenizer:
    def __init__(
        self,
        pretrained_name="QizhiPei/biot5-base-text2mol",
        selfies_dict_path=os.path.join("dataset", "selfies_dict.txt"),
    ):
        self.tokenizer = self.get_tokenizer(pretrained_name, selfies_dict_path)

    def get_tokenizer(self, pretrained_name, selfies_dict_path):
        tokenizer = AutoTokenizer.from_pretrained(pretrained_name, use_fast=True)
        tokenizer.model_max_length = int(1e9)

        amino_acids = [
            "A",
            "C",
            "D",
            "E",
            "F",
            "G",
            "H",
            "I",
            "K",
            "L",
            "M",
            "N",
            "P",
            "Q",
            "R",
            "S",
            "T",
            "V",
            "W",
            "Y",
        ]
        prefixed_amino_acids = [f"<p>{aa}" for aa in amino_acids]
        tokenizer.add_tokens(prefixed_amino_acids)

        selfies_dict_list = [line.strip() for line in open(selfies_dict_path)]
        tokenizer.add_tokens(selfies_dict_list)

        special_tokens_dict = {
            "additional_special_tokens": [
                "<bom>",
                "<eom>",
                "<bop>",
                "<eop>",
                "MOLECULE NAME",
                "DESCRIPTION",
                "PROTEIN NAME",
                "FUNCTION",
                "SUBCELLULAR LOCATION",
                "PROTEIN FAMILIES",
            ]
        }
        tokenizer.add_special_tokens(special_tokens_dict)
        return tokenizer

    def __call__(self, *args, **kwds):
        return self.tokenizer(*args, **kwds)

    def __len__(self):
        return len(self.tokenizer)

    def corrupt(self, selfies_list: list):
        tensors = []
        if type(selfies_list) is str:
            selfies_list = [selfies_list]
        for selfies in selfies_list:
            tensors.append(self.corrupt_one(selfies))
        return torch.concat(tensors, dim=0)

    # TODO: rewrite this for selfies
    def corrupt_one(self, selfies):
        smi = sf.decoder(selfies)
        # res = [self.toktoid[i] for i in self.rg.findall(smi)]
        res = [i for i in self.rg.findall(smi)]
        total_length = len(res) + 2
        if total_length > self.max_len:
            return self.encode_one(smi)
        ######################## start corruption ###########################
        r = random.random()
        if r < 0.3:
            pa, ring = True, True
        elif r < 0.65:
            pa, ring = True, False
        else:
            pa, ring = False, True
        #########################
        max_ring_num = 1
        ringpos = []
        papos = []
        for pos, at in enumerate(res):
            if at == "(" or at == ")":
                papos.append(pos)
            elif at.isnumeric():
                max_ring_num = max(max_ring_num, int(at))
                ringpos.append(pos)
        # ( & ) remove
        r = random.random()
        if r < 0.3:
            remove, padd = True, True
        elif r < 0.65:
            remove, padd = True, False
        else:
            remove, padd = False, True
        if pa and len(papos) > 0:
            if remove:
                # remove pa
                n_remove = getrandomnumber(
                    [1, 2, 3, 4], 1, weights=[0.6, 0.2, 0.1, 0.1]
                )
                p_remove = set(random.choices(papos, weights=None, k=n_remove))
                total_length -= len(p_remove)
                for p in p_remove:
                    res[p] = None
                    # print('debug pa delete {}'.format(p))
        # Ring remove
        r = random.random()
        if r < 0.3:
            remove, radd = True, True
        elif r < 0.65:
            remove, radd = True, False
        else:
            remove, radd = False, True
        if ring and len(ringpos) > 0:
            if remove:
                # remove ring
                n_remove = getrandomnumber(
                    [1, 2, 3, 4], 1, weights=[0.7, 0.2, 0.05, 0.05]
                )
                p_remove = set(random.choices(ringpos, weights=None, k=n_remove))
                total_length -= len(p_remove)
                for p in p_remove:
                    res[p] = None
                    # print('debug ring delete {}'.format(p))
        # ring add & ( ) add
        if pa:
            if padd:
                n_add = getrandomnumber([1, 2, 3], 1, weights=[0.8, 0.2, 0.1])
                n_add = min(self.max_len - total_length, n_add)
                for _ in range(n_add):
                    sele = random.randrange(len(res) + 1)
                    res.insert(sele, "(" if random.random() < 0.5 else ")")
                    # print('debug pa add {}'.format(sele))
                    total_length += 1
        if ring:
            if radd:
                n_add = getrandomnumber([1, 2, 3], 1, weights=[0.8, 0.2, 0.1])
                n_add = min(self.max_len - total_length, n_add)
                for _ in range(n_add):
                    sele = random.randrange(len(res) + 1)
                    res.insert(sele, str(random.randrange(1, max_ring_num + 1)))
                    # print('debug ring add {}'.format(sele))
                    total_length += 1

        ########################## end corruption ###############################
        # print('test:',res)
        # print('test:',''.join([i for i in res if i is not None]))

        res = [self.toktoid[i] for i in res if i is not None]
        res = [1] + res + [2]
        if len(res) < self.max_len:
            res += [0] * (self.max_len - len(res))
        else:
            res = res[: self.max_len]
            res[-1] = 2
        return torch.LongTensor([res])

    def decode_one(self, sample):
        return self.tokenizer.decode(sample)

    def decode(self, sample_list):
        if len(sample_list.shape)==1:
            return [self.decode_one(sample_list)]
        return [self.decode_one(sample) for sample in sample_list]

if __name__ == "__main__":
    import selfies as sf

    tokenizer = Tokenizer(
        selfies_dict_path=r"D:\molecule\mol-lang-bridge\dataset\selfies_dict.txt"
    )
    smiles = [
        "[210Po]",
        "C[C@H]1C(=O)[C@H]([C@H]([C@H](O1)OP(=O)(O)OP(=O)(O)OC[C@@H]2[C@H](C[C@@H](O2)N3C=C(C(=O)NC3=O)C)O)O)O",
        "C(O)P(=O)(O)[O-]",
        "CCCCCCCCCCCC(=O)OC(=O)CCCCCCCCCCC",
        "C[C@]12CC[C@H](C[C@H]1CC[C@@H]3[C@@H]2CC[C@]4([C@H]3CCC4=O)C)O[C@H]5[C@@H]([C@H]([C@@H]([C@H](O5)C(=O)O)O)O)O",
    ]
    selfies = [sf.encoder(smiles_ele) for smiles_ele in smiles]
    output = tokenizer(
        selfies,
        max_length=512,
        truncation=True,
        padding="max_length",
        add_special_tokens=True,
        return_tensors="pt",
        return_attention_mask=True,
    )
    print(output["input_ids"])