Spaces:
Sleeping
Sleeping
File size: 12,931 Bytes
32ad276 99d0cac 32ad276 99d0cac 32ad276 8489337 d2d66c1 5a15b7d 89c77c7 32ad276 910dbfd 32ad276 910dbfd c144d94 32ad276 5a15b7d c144d94 5a15b7d 32ad276 c144d94 5a15b7d 32ad276 c144d94 32ad276 39ee51b c81fd70 1ead00b 99d0cac 1ead00b 99d0cac c81fd70 99d0cac 39ee51b f7ff440 910dbfd 32ad276 6cd005a 0211c96 6cd005a 32ad276 7b395f2 2f98b46 1854801 22441f4 ceac283 32ad276 43d6899 32ad276 8489337 32ad276 910dbfd 32ad276 910dbfd 32ad276 910dbfd 32ad276 e7c2e79 32ad276 8489337 910dbfd 8489337 910dbfd 8489337 d2d66c1 32ad276 39ee51b 7902830 99d0cac c81fd70 99d0cac c81fd70 39ee51b 99d0cac 7902830 c81fd70 39ee51b 412551f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import gradio as gr
import json
import io
import boto3
import base64
from PIL import Image
from settings_mgr import generate_download_settings_js, generate_upload_settings_js
from llm import LLM, log_to_console
from botocore.config import Config
dump_controls = False
def undo(history):
history.pop()
return history
def dump(history):
return str(history)
def load_settings():
# Dummy Python function, actual loading is done in JS
pass
def save_settings(acc, sec, prompt, temp):
# Dummy Python function, actual saving is done in JS
pass
def process_values_js():
return """
() => {
return ["access_key", "secret_key", "token"];
}
"""
def bot(message, history, aws_access, aws_secret, aws_token, system_prompt, temperature, max_tokens, model: str, region):
try:
llm = LLM.create_llm(model)
messages = llm.generate_body(message, history)
config = Config(
read_timeout = 600,
connect_timeout = 30,
retries = {
'max_attempts': 10,
'mode': 'adaptive'
}
)
sess = boto3.Session(
aws_access_key_id = aws_access,
aws_secret_access_key = aws_secret,
aws_session_token = aws_token,
region_name = region)
br = sess.client(service_name="bedrock-runtime", config = config)
response = br.converse_stream(
modelId = model,
messages = messages,
system = [{"text": system_prompt}],
inferenceConfig = {
"temperature": temperature,
"maxTokens": max_tokens,
}
)
response_stream = response.get('stream')
partial_response = ""
for chunk in llm.read_response(response_stream):
partial_response += chunk
yield partial_response
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
def import_history(history, file):
with open(file.name, mode="rb") as f:
content = f.read()
if isinstance(content, bytes):
content = content.decode('utf-8', 'replace')
else:
content = str(content)
# Deserialize the JSON content
import_data = json.loads(content)
# Check if 'history' key exists for backward compatibility
if 'history' in import_data:
history = import_data['history']
system_prompt_value = import_data.get('system_prompt', '') # Set default if not present
else:
# Assume it's an old format with only history data
history = import_data
system_prompt_value = ''
# Process the history to handle image data
processed_history = []
for pair in history:
processed_pair = []
for message in pair:
if isinstance(message, dict) and 'file' in message and 'data' in message['file']:
# Create a gradio.Image from the base64 data
image_data = base64.b64decode(message['file']['data'].split(',')[1])
img = Image.open(io.BytesIO(image_data))
gr_image = gr.Image(img)
processed_pair.append(gr_image)
gr.Warning("Reusing images across sessions is limited to one conversation turn")
else:
processed_pair.append(message)
processed_history.append(processed_pair)
return processed_history, system_prompt_value
def export_history(h, s):
pass
with gr.Blocks(delete_cache=(86400, 86400)) as demo:
gr.Markdown("# Amazon™️ Bedrock™️ Chat™️ (Nils' Version™️) feat. Mistral™️ AI & Anthropic™️ Claude™️")
with gr.Accordion("Startup"):
gr.Markdown("""Use of this interface permitted under the terms and conditions of the
[MIT license](https://github.com/ndurner/amz_bedrock_chat/blob/main/LICENSE).
Third party terms and conditions apply, particularly
those of the LLM vendor (AWS) and hosting provider (Hugging Face). This software and the AI models may make mistakes, so verify all outputs.""")
aws_access = gr.Textbox(label="AWS Access Key", elem_id="aws_access")
aws_secret = gr.Textbox(label="AWS Secret Key", elem_id="aws_secret")
aws_token = gr.Textbox(label="AWS Session Token", elem_id="aws_token")
model = gr.Dropdown(label="Model", value="anthropic.claude-3-5-sonnet-20240620-v1:0", allow_custom_value=True, elem_id="model",
choices=["anthropic.claude-3-5-sonnet-20240620-v1:0", "anthropic.claude-3-opus-20240229-v1:0", "meta.llama3-1-405b-instruct-v1:0", "anthropic.claude-3-sonnet-20240229-v1:0", "anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-v2:1", "anthropic.claude-v2",
"mistral.mistral-7b-instruct-v0:2", "mistral.mixtral-8x7b-instruct-v0:1", "mistral.mistral-large-2407-v1:0"])
system_prompt = gr.TextArea("You are a helpful yet diligent AI assistant. Answer faithfully and factually correct. Respond with 'I do not know' if uncertain.", label="System Prompt", lines=3, max_lines=250, elem_id="system_prompt")
region = gr.Dropdown(label="Region", value="us-west-2", allow_custom_value=True, elem_id="region",
choices=["eu-central-1", "eu-west-3", "us-east-1", "us-west-1", "us-west-2"])
temp = gr.Slider(0, 1, label="Temperature", elem_id="temp", value=1)
max_tokens = gr.Slider(1, 8192, label="Max. Tokens", elem_id="max_tokens", value=4096)
save_button = gr.Button("Save Settings")
load_button = gr.Button("Load Settings")
dl_settings_button = gr.Button("Download Settings")
ul_settings_button = gr.Button("Upload Settings")
load_button.click(load_settings, js="""
() => {
let elems = ['#aws_access textarea', '#aws_secret textarea', '#aws_token textarea', '#system_prompt textarea', '#temp input', '#max_tokens input', '#model', '#region'];
elems.forEach(elem => {
let item = document.querySelector(elem);
let event = new InputEvent('input', { bubbles: true });
item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || '';
item.dispatchEvent(event);
});
}
""")
save_button.click(save_settings, [aws_access, aws_secret, aws_token, system_prompt, temp, max_tokens, model, region], js="""
(acc, sec, tok, system_prompt, temp, ntok, model, region) => {
localStorage.setItem('aws_access', acc);
localStorage.setItem('aws_secret', sec);
localStorage.setItem('aws_token', tok);
localStorage.setItem('system_prompt', system_prompt);
localStorage.setItem('temp', document.querySelector('#temp input').value);
localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value);
localStorage.setItem('model', model);
localStorage.setItem('region', region);
}
""")
control_ids = [('aws_access', '#aws_access textarea'),
('aws_secret', '#aws_secret textarea'),
('aws_token', '#aws_token textarea'),
('system_prompt', '#system_prompt textarea'),
('temp', '#temp input'),
('max_tokens', '#max_tokens input'),
('model', '#model'),
('region', '#region')]
controls = [aws_access, aws_secret, aws_token, system_prompt, temp, max_tokens, model, region]
dl_settings_button.click(None, controls, js=generate_download_settings_js("amz_chat_settings.bin", control_ids))
ul_settings_button.click(None, None, None, js=generate_upload_settings_js(control_ids))
chat = gr.ChatInterface(fn=bot, multimodal=True, additional_inputs=controls, retry_btn = None, autofocus = False)
chat.textbox.file_count = "multiple"
chatbot = chat.chatbot
chatbot.show_copy_button = True
chatbot.height = 350
if dump_controls:
with gr.Row():
dmp_btn = gr.Button("Dump")
txt_dmp = gr.Textbox("Dump")
dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp])
with gr.Accordion("Import/Export", open = False):
import_button = gr.UploadButton("History Import")
export_button = gr.Button("History Export")
export_button.click(export_history, [chatbot, system_prompt], js="""
async (chat_history, system_prompt) => {
console.log('Chat History:', JSON.stringify(chat_history, null, 2));
async function fetchAndEncodeImage(url) {
const response = await fetch(url);
const blob = await response.blob();
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result);
reader.onerror = reject;
reader.readAsDataURL(blob);
});
}
const processedHistory = await Promise.all(chat_history.map(async (pair) => {
return await Promise.all(pair.map(async (message) => {
if (message && message.file && message.file.url) {
const base64Image = await fetchAndEncodeImage(message.file.url);
return {
...message,
file: {
...message.file,
data: base64Image
}
};
}
return message;
}));
}));
const export_data = {
history: processedHistory,
system_prompt: system_prompt
};
const history_json = JSON.stringify(export_data);
const blob = new Blob([history_json], {type: 'application/json'});
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = 'chat_history.json';
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
}
""")
dl_button = gr.Button("File download")
dl_button.click(lambda: None, [chatbot], js="""
(chat_history) => {
// Attempt to extract content enclosed in backticks with an optional filename
const contentRegex = /```(\\S*\\.(\\S+))?\\n?([\\s\\S]*?)```/;
const match = contentRegex.exec(chat_history[chat_history.length - 1][1]);
if (match && match[3]) {
// Extract the content and the file extension
const content = match[3];
const fileExtension = match[2] || 'txt'; // Default to .txt if extension is not found
const filename = match[1] || `download.${fileExtension}`;
// Create a Blob from the content
const blob = new Blob([content], {type: `text/${fileExtension}`});
// Create a download link for the Blob
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
// If the filename from the chat history doesn't have an extension, append the default
a.download = filename.includes('.') ? filename : `${filename}.${fileExtension}`;
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
} else {
// Inform the user if the content is malformed or missing
alert('Sorry, the file content could not be found or is in an unrecognized format.');
}
}
""")
import_button.upload(import_history, inputs=[chatbot, import_button], outputs=[chatbot, system_prompt])
demo.queue().launch() |