Spaces:
Sleeping
Sleeping
File size: 12,699 Bytes
910dbfd d2d66c1 910dbfd d2d66c1 c144d94 4e362cd 99d0cac 910dbfd c144d94 d2d66c1 910dbfd c144d94 910dbfd c144d94 910dbfd c5061e6 c144d94 910dbfd c5061e6 c144d94 c5061e6 910dbfd c144d94 c5061e6 c144d94 c5061e6 245db11 16f3173 910dbfd c144d94 d2d66c1 c144d94 d2d66c1 c144d94 d2d66c1 c144d94 910dbfd c144d94 910dbfd c144d94 fd9a199 910dbfd c144d94 fd9a199 c144d94 fd9a199 c144d94 fd9a199 c144d94 fd9a199 c144d94 4e362cd c144d94 4e362cd 517fe9b 4e362cd 910dbfd 4e362cd 0e1ed46 4e362cd 0e1ed46 4e362cd c144d94 4e362cd 517fe9b 4e362cd 517fe9b 4e362cd 517fe9b 4e362cd 517fe9b 4e362cd 517fe9b 4e362cd 517fe9b 4e362cd 517fe9b 4e362cd 0e1ed46 4e362cd 0e1ed46 4e362cd c144d94 0c39b50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
from abc import ABC, abstractmethod
from typing import Type, TypeVar
import base64
import os
import json
from doc2json import process_docx
import fitz
from PIL import Image
import io
import boto3
from botocore.config import Config
import re
from PIL import Image
import io
import math
import gradio
# constants
log_to_console = False
use_document_message_type = False # AWS document message type usage
LLMClass = TypeVar('LLMClass', bound='LLM')
class LLM:
@staticmethod
def create_llm(model: str) -> Type[LLMClass]:
return LLM()
def generate_body(self, message, history):
messages = []
# AWS API requires strict user, assi, user, ... sequence
lastTypeHuman = False
for msg in history:
if msg['role'] == "user":
if lastTypeHuman:
last_msg = messages.pop()
user_msg_parts = last_msg["content"]
else:
user_msg_parts = []
content = msg['content']
if isinstance(content, gradio.File):
user_msg_parts.extend(self._process_file(content.value['path']))
elif isinstance(content, gradio.Image):
user_msg_parts.extend(self._process_file(content.value["path"]))
else:
user_msg_parts.extend([{"text": content}])
messages.append({"role": "user", "content": user_msg_parts})
lastTypeHuman = True
else:
messages.append({
"role": "assistant",
"content":[{"text": msg['content']}]
})
lastTypeHuman = False
if lastTypeHuman:
last_msg = messages.pop()
user_msg_parts = last_msg["content"]
else:
user_msg_parts = []
if message["text"]:
user_msg_parts.append({"text": message["text"]})
if message["files"]:
for file in message["files"]:
user_msg_parts.extend(self._process_file(file))
if user_msg_parts:
messages.append({"role": "user", "content": user_msg_parts})
return messages
def _process_file(self, file_path):
if use_document_message_type and self._is_supported_document_type(file_path):
return [self._create_document_message(file_path)]
else:
return self._encode_file(file_path)
def _is_supported_document_type(self, file_path):
supported_extensions = ['.pdf', '.csv', '.doc', '.docx', '.xls', '.xlsx', '.html', '.txt', '.md']
return os.path.splitext(file_path)[1].lower() in supported_extensions
def _create_document_message(self, file_path):
with open(file_path, 'rb') as file:
file_content = file.read()
file_name = re.sub(r'[^a-zA-Z0-9\s\-\(\)\[\]]', '', os.path.basename(file_path))[:200].strip() or "unnamed_file"
file_extension = os.path.splitext(file_path)[1][1:] # Remove the dot
return {
"document": {
"name": file_name,
"format": file_extension,
"source": {
"bytes": file_content
}
}
}
def _encode_file(self, fn: str) -> list:
if fn.endswith(".docx"):
return [{"text": process_docx(fn)}]
elif fn.endswith(".pdf"):
return self._process_pdf_img(fn)
else:
with open(fn, mode="rb") as f:
content = f.read()
if isinstance(content, bytes):
try:
# try to add as image
image_data = self._encode_image(content)
return [{"image": image_data}]
except:
# not an image, try text
content = content.decode('utf-8', 'replace')
else:
content = str(content)
fname = os.path.basename(fn)
return [{"text": f"``` {fname}\n{content}\n```"}]
def _process_pdf_img(self, pdf_fn: str):
pdf = fitz.open(pdf_fn)
message_parts = []
page_scales = {} # Cache for similar page sizes
def calculate_tokens(width, height):
return (width * height) / 750
for page in pdf.pages():
page_rect = page.rect
orig_width = page_rect.width
orig_height = page_rect.height
page_key = (orig_width, orig_height)
# Use cached scale as starting point if available
scale = page_scales.get(page_key, 1.0)
while True:
# Render with current scale
mat = fitz.Matrix(scale, scale)
pix = page.get_pixmap(matrix=mat, alpha=False)
# Check actual rendered dimensions
actual_tokens = calculate_tokens(pix.width, pix.height)
actual_long_edge = max(pix.width, pix.height)
if actual_long_edge <= 1568 and actual_tokens <= 1600:
# We found a good scale, cache it
if page_key not in page_scales:
page_scales[page_key] = scale
break
# Calculate new scale factor based on both constraints
if actual_long_edge > 1568:
scale_factor = min(1568 / actual_long_edge, 0.9)
else:
scale_factor = min(math.sqrt(1600 / actual_tokens), 0.9)
scale *= scale_factor
# Convert to PIL Image
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
# Handle compression
quality = 95
while True:
buffer = io.BytesIO()
img.save(buffer, format="webp", quality=quality)
img_bytes = buffer.getvalue()
if len(img_bytes) <= 5 * 1024 * 1024 or quality <= 20:
break
quality = max(int(quality * 0.9), 20)
message_parts.append({"text": f"Page {page.number + 1} of file '{pdf_fn}'"})
message_parts.append({"image": {
"format": "webp",
"source": {"bytes": img_bytes}
}})
pdf.close()
return message_parts
def _encode_image(self, image_data):
try:
# Open the image using Pillow
img = Image.open(io.BytesIO(image_data))
original_format = img.format.lower()
except IOError:
raise Exception("Unknown image type")
# Ensure correct orientation based on EXIF
try:
exif = img._getexif()
if exif:
orientation = exif.get(274) # 274 is the orientation tag
if orientation:
# Rotate or flip based on EXIF orientation
if orientation == 3:
img = img.rotate(180, expand=True)
elif orientation == 6:
img = img.rotate(270, expand=True)
elif orientation == 8:
img = img.rotate(90, expand=True)
except:
pass # If EXIF processing fails, use image as-is
# check if within the limits for Claude as per https://docs.anthropic.com/en/docs/build-with-claude/vision
def calculate_tokens(width, height):
return (width * height) / 750
tokens = calculate_tokens(img.width, img.height)
long_edge = max(img.width, img.height)
format_ok = original_format in ["jpg", "jpeg", "png", "webp"]
# Check if the image already meets all requirements
if format_ok and (long_edge <= 1568 and tokens <= 1600 and len(image_data) <= 5 * 1024 * 1024):
return {
"format": original_format,
"source": {"bytes": image_data}
}
# If we need to modify the image, proceed with resizing and/or compression
orig_scale_factor = 1
orig_img = img
while long_edge > 1568 or tokens > 1600:
if long_edge > 1568:
scale_factor = min(1568 / long_edge, 0.9)
else:
scale_factor = min(math.sqrt(1600 / tokens), 0.9)
scale_factor = orig_scale_factor * scale_factor
orig_scale_factor = scale_factor
new_width = int(orig_img.width * scale_factor)
new_height = int(orig_img.height * scale_factor)
img = orig_img.resize((new_width, new_height), Image.LANCZOS)
long_edge = max(img.width, img.height)
tokens = calculate_tokens(img.width, img.height)
# Try to save in original format first
buffer = io.BytesIO()
out_fmt = "png" if original_format == "png" else "webp"
img.save(buffer, format=out_fmt, quality=95 if out_fmt == "webp" else None)
image_data = buffer.getvalue()
# If the image is still too large, switch to WebP and compress
if len(image_data) > 5 * 1024 * 1024:
quality = 95
while len(image_data) > 5 * 1024 * 1024:
quality = max(int(quality * 0.9), 20)
buffer = io.BytesIO()
img.save(buffer, format="webp", quality=quality)
image_data = buffer.getvalue()
if quality == 20:
# If we've reached quality 20 and it's still too large, resize
scale_factor = 0.9
new_width = int(img.width * scale_factor)
new_height = int(img.height * scale_factor)
img = img.resize((new_width, new_height), Image.LANCZOS)
quality = 95 # Reset quality for the resized image
return {
"format": "webp",
"source": {"bytes": image_data}
}
def read_response(self, response_stream):
"""
Handles response stream that may contain both regular text and tool use requests.
Yields tuples of (text, tool_request, stop_reason) where:
- text: accumulated text response
- tool_request: dict with tool use details if present, None otherwise
- stop_reason: string indicating why stream stopped, None while streaming
"""
message = {}
content = []
message['content'] = content
tool_use = {}
text = ''
stop_reason = None
for chunk in response_stream:
if 'messageStart' in chunk:
message['role'] = chunk['messageStart']['role']
elif 'contentBlockStart' in chunk:
tool = chunk['contentBlockStart']['start']['toolUse']
tool_use['toolUseId'] = tool['toolUseId']
tool_use['name'] = tool['name']
elif 'contentBlockDelta' in chunk:
delta = chunk['contentBlockDelta']['delta']
if 'toolUse' in delta:
if 'input' not in tool_use:
tool_use['input'] = ''
tool_use['input'] += delta['toolUse']['input']
elif 'text' in delta:
text += delta['text']
yield None, delta['text']
elif 'contentBlockStop' in chunk:
if 'input' in tool_use:
tool_use['input'] = json.loads(tool_use['input'])
content.append({'toolUse': tool_use})
tool_use = {}
else:
content.append({'text': text})
elif 'messageStop' in chunk:
stop_reason = chunk['messageStop']['stopReason']
yield stop_reason, message
elif 'metadata' in chunk and 'usage' in chunk['metadata'] and log_to_console:
print("\nToken usage:")
print(f"Input tokens: {metadata['usage']['inputTokens']}")
print(f"Output tokens: {metadata['usage']['outputTokens']}")
print(f"Total tokens: {metadata['usage']['totalTokens']}") |