File size: 8,713 Bytes
32ad276
1cfc216
32ad276
03f0948
32ad276
 
 
 
1cfc216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ad276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cfc216
 
 
 
 
 
 
 
 
32ad276
 
 
 
 
 
 
 
 
 
 
 
 
 
0008662
32ad276
 
 
 
 
 
0008662
32ad276
 
 
0008662
32ad276
03f0948
 
 
0008662
 
 
 
 
1cfc216
 
 
0008662
1cfc216
0008662
 
32ad276
0008662
1cfc216
 
 
 
 
 
 
 
32ad276
1cfc216
 
 
 
0008662
1cfc216
32ad276
1cfc216
 
 
 
0008662
 
 
 
03f0948
0008662
 
 
 
 
 
32ad276
 
0008662
 
 
32ad276
 
 
 
 
 
 
 
 
0008662
32ad276
 
0008662
 
1cfc216
0008662
 
32ad276
3b2d5df
32ad276
 
 
 
 
0008662
32ad276
 
 
 
 
 
 
 
 
0008662
 
 
 
 
32ad276
 
0008662
32ad276
 
 
 
 
 
 
 
 
 
5c08534
 
 
 
 
 
 
 
32ad276
 
 
 
 
 
 
 
 
 
0008662
32ad276
 
 
 
 
 
 
 
 
 
0008662
32ad276
 
 
1cfc216
32ad276
412551f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import gradio as gr
import base64
import os
from openai import OpenAI

dump_controls = False
log_to_console = False

# constants
image_embed_prefix = "🖼️🆙 "

def encode_image(image_data):
    """Generates a prefix for image base64 data in the required format for the

    four known image formats: png, jpeg, gif, and webp.



    Args:

    image_data: The image data, encoded in base64.



    Returns:

    A string containing the prefix.

    """

    # Get the first few bytes of the image data.
    magic_number = image_data[:4]
  
    # Check the magic number to determine the image type.
    if magic_number.startswith(b'\x89PNG'):
        image_type = 'png'
    elif magic_number.startswith(b'\xFF\xD8'):
        image_type = 'jpeg'
    elif magic_number.startswith(b'GIF89a'):
        image_type = 'gif'
    elif magic_number.startswith(b'RIFF'):
        if image_data[8:12] == b'WEBP':
            image_type = 'webp'
        else:
            # Unknown image type.
            raise Exception("Unknown image type")
    else:
        # Unknown image type.
        raise Exception("Unknown image type")

    return f"data:image/{image_type};base64,{base64.b64encode(image_data).decode('utf-8')}"

def add_text(history, text):
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)

def add_file(history, file):
    with open(file.name, mode="rb") as f:
        content = f.read()

        if isinstance(content, bytes):
            content = content.decode('utf-8', 'replace')
        else:
            content = str(content)

    fn = os.path.basename(file.name)
    history = history + [(f'```{fn}\n{content}\n```', None)]

    gr.Info(f"File added as {fn}")

    return history

def add_img(history, file):
    if log_to_console:
        print(f"add_img {file.name}")
    history = history + [(image_embed_prefix + file.name, None)]

    gr.Info(f"Image added as {file.name}")

    return history

def submit_text(txt_value):
    return add_text([chatbot, txt_value], [chatbot, txt_value])

def undo(history):
    history.pop()
    return history

def dump(history):
    return str(history)

def load_settings():  
    # Dummy Python function, actual loading is done in JS  
    pass  

def save_settings(acc, sec, prompt, temp, tokens, model):  
    # Dummy Python function, actual saving is done in JS  
    pass  

def process_values_js():
    return """

    () => {

        return ["oai_key", "system_prompt", "seed"];

    }

    """

def bot(message, history, oai_key, system_prompt, seed, temperature, max_tokens, model):
    try:
        client = OpenAI(
            api_key=oai_key
        )

        seed_i = None
        if seed:
            seed_i = int(seed)

        if log_to_console:
            print(f"bot history: {str(history)}")

        history_openai_format = []
        user_msg_parts = []
        if system_prompt:
                history_openai_format.append({"role": "system", "content": system_prompt})
        for human, assi in history:
            if human is not None:
                if human.startswith(image_embed_prefix):
                    with open(human.lstrip(image_embed_prefix), mode="rb") as f:
                        content = f.read()
                    user_msg_parts.append({"type": "image_url",
                                           "image_url":{"url": encode_image(content)}})
                else:
                    user_msg_parts.append({"type": "text", "text": human})

            if assi is not None:
                if user_msg_parts:
                    history_openai_format.append({"role": "user", "content": user_msg_parts})
                    user_msg_parts = []

                history_openai_format.append({"role": "assistant", "content": assi})

        if message:
            user_msg_parts.append({"type": "text", "text": human})
        
        if user_msg_parts:
            history_openai_format.append({"role": "user", "content": user_msg_parts})

        if log_to_console:
            print(f"br_prompt: {str(history_openai_format)}")

        response = client.chat.completions.create(
            model=model,
            messages= history_openai_format,
            temperature=temperature,
            seed=seed_i,
            max_tokens=max_tokens
        )

        if log_to_console:
            print(f"br_response: {str(response)}")

        history[-1][1] = response.choices[0].message.content
        if log_to_console:
            print(f"br_result: {str(history)}")

    except Exception as e:
        raise gr.Error(f"Error: {str(e)}")

    return "", history

with gr.Blocks() as demo:
    gr.Markdown("# OAI Chat (Nils' Version™️)")

    with gr.Accordion("Settings"):
        oai_key = gr.Textbox(label="OpenAI API Key", elem_id="oai_key")
        model = gr.Dropdown(label="Model", value="gpt-4-1106-preview", allow_custom_value=True, elem_id="model",
                            choices=["gpt-4-1106-preview", "gpt-4", "gpt-4-vision-preview", "gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-1106"])
        system_prompt = gr.TextArea("You are a helpful AI.", label="System Prompt", lines=3, max_lines=250, elem_id="system_prompt")  
        seed = gr.Textbox(label="Seed", elem_id="seed")
        temp = gr.Slider(0, 1, label="Temperature", elem_id="temp", value=1)
        max_tokens = gr.Slider(1, 4000, label="Max. Tokens", elem_id="max_tokens", value=800)
        save_button = gr.Button("Save Settings")  
        load_button = gr.Button("Load Settings")  

        load_button.click(load_settings, js="""  

            () => {  

                let elems = ['#oai_key textarea', '#system_prompt textarea', '#seed textarea', '#temp input', '#max_tokens input', '#model'];

                elems.forEach(elem => {

                    let item = document.querySelector(elem);

                    let event = new InputEvent('input', { bubbles: true });

                    item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || '';

                    item.dispatchEvent(event);

                });

            }  

        """)

        save_button.click(save_settings, [oai_key, system_prompt, seed, temp, max_tokens, model], js="""  

            (oai, sys, seed, temp, ntok, model) => {  

                localStorage.setItem('oai_key', oai);  

                localStorage.setItem('system_prompt', sys);  

                localStorage.setItem('seed', seed);  

                localStorage.setItem('temp', document.querySelector('#temp input').value);  

                localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value);  

                localStorage.setItem('model', model);  

            }  

        """) 

    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        show_copy_button=True,
        height=350
    )

    with gr.Row():
        btn = gr.UploadButton("📁 Upload", size="sm")
        img_btn = gr.UploadButton("🖼️ Upload", size="sm", file_types=["image"])
        undo_btn = gr.Button("↩️ Undo")
        undo_btn.click(undo, inputs=[chatbot], outputs=[chatbot])

        clear = gr.ClearButton(chatbot, value="🗑️ Clear")

    with gr.Row():
        txt = gr.TextArea(
            scale=4,
            show_label=False,
            placeholder="Enter text and press enter, or upload a file",
            container=False,
            lines=3,            
        )
        submit_btn = gr.Button("🚀 Send", scale=0)
        submit_click = submit_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
            bot, [txt, chatbot, oai_key, system_prompt, seed, temp, max_tokens, model], [txt, chatbot],
        )
        submit_click.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

    if dump_controls:
        with gr.Row():
            dmp_btn = gr.Button("Dump")
            txt_dmp = gr.Textbox("Dump")
            dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp])

    txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
        bot, [txt, chatbot, oai_key, system_prompt, seed, temp, max_tokens, model], [txt, chatbot],
    )
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
    file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False, postprocess=False)
    img_msg = img_btn.upload(add_img, [chatbot, img_btn], [chatbot], queue=False, postprocess=False)

demo.queue().launch()