|
from transformers import pipeline |
|
from gradio import gr |
|
from huggingface_hub import InferenceClient |
|
|
|
pipe = pipeline("fill-mask", model="google-bert/bert-base-uncased") |
|
|
|
def respond(user_input, history, system_message, max_tokens, temperature, top_p): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val["role"] == "user": |
|
messages.append(val) |
|
if val["role"] == "assistant": |
|
messages.append(val) |
|
|
|
messages.append({"role": "user", "content": user_input}) |
|
|
|
response = "" |
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
response += token |
|
yield response |
|
|
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
inputs=[ |
|
gr.Textbox(placeholder="Type your message here", label="User input"), |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |