Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""main.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/#fileId=https%3A//huggingface.co/spaces/neelimapreeti297/panda_cat_dog_classification/blob/main/main.ipynb
|
8 |
+
"""
|
9 |
+
|
10 |
+
#import libraries
|
11 |
+
import torch
|
12 |
+
from torchvision import datasets, transforms
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.optim as optim
|
15 |
+
from torch.utils.data import DataLoader
|
16 |
+
from torchvision.datasets import ImageFolder
|
17 |
+
|
18 |
+
#define the data transforms
|
19 |
+
|
20 |
+
transform = transforms.Compose([
|
21 |
+
transforms.Resize((224,224)),
|
22 |
+
transforms.ToTensor(),
|
23 |
+
transforms.Normalize((0.485,0.456,0.406),(0.229,0.224,0.225))
|
24 |
+
])
|
25 |
+
|
26 |
+
#insert the datasets
|
27 |
+
|
28 |
+
train_dataset = ImageFolder('./data/train', transform=transform)
|
29 |
+
test_dataset =ImageFolder('./data/test', transform=transform)
|
30 |
+
|
31 |
+
# make cnn model
|
32 |
+
|
33 |
+
class CNN(nn.Module):
|
34 |
+
def __init__(self):
|
35 |
+
super(CNN, self).__init__()
|
36 |
+
self.conv1 = nn.Conv2d(3, 6, 5)
|
37 |
+
self.conv2 = nn.Conv2d(6, 16, 5)
|
38 |
+
self.pool = nn.MaxPool2d(2, 2)
|
39 |
+
self.fc1 = nn.Linear(16 * 53 * 53, 120)
|
40 |
+
self.fc2 = nn.Linear(120, 84)
|
41 |
+
self.fc3 = nn.Linear(84, 3)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.conv1(x)
|
45 |
+
x = self.pool(x)
|
46 |
+
x = self.conv2(x)
|
47 |
+
x = self.pool(x)
|
48 |
+
x = x.view(-1, 16 * 53 * 53)
|
49 |
+
x = self.fc1(x)
|
50 |
+
x = self.fc2(x)
|
51 |
+
x = self.fc3(x)
|
52 |
+
return x
|
53 |
+
|
54 |
+
batch_size = 8
|
55 |
+
|
56 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
57 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
|
58 |
+
|
59 |
+
model = CNN()
|
60 |
+
loss_function = nn.CrossEntropyLoss()
|
61 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
62 |
+
|
63 |
+
#Train the model
|
64 |
+
|
65 |
+
for epoch in range(10):
|
66 |
+
for i, (images, labels) in enumerate(train_loader):
|
67 |
+
|
68 |
+
outputs = model(images)
|
69 |
+
|
70 |
+
loss = loss_function(outputs, labels)
|
71 |
+
|
72 |
+
optimizer.zero_grad()
|
73 |
+
loss.backward()
|
74 |
+
optimizer.step()
|
75 |
+
|
76 |
+
if i % 200 == 0:
|
77 |
+
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch + 1, 10, i + 1, len(train_loader), loss.item()))
|
78 |
+
|
79 |
+
#iterate over the test data
|
80 |
+
|
81 |
+
correct = 0
|
82 |
+
total = 0
|
83 |
+
for i, (images, labels) in enumerate(test_loader):
|
84 |
+
outputs = model(images)
|
85 |
+
|
86 |
+
_, predicted = torch.max(outputs.data, 1)
|
87 |
+
correct += (predicted == labels).sum().item()
|
88 |
+
total += labels.size(0)
|
89 |
+
|
90 |
+
#calculate the accuracy
|
91 |
+
accuracy = 100 * correct / total
|
92 |
+
print('Accuracy: {}%' .format(accuracy))
|
93 |
+
|
94 |
+
model_scripted = torch.jit.script(model)
|
95 |
+
model_scripted.save('./models/cat_dog_cnn.pt')
|
96 |
+
|