Commit 3
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- main.ipynb +225 -0
- test/cats/cats_00091.jpg +0 -0
- test/cats/cats_00092.jpg +0 -0
- test/cats/cats_00093.jpg +0 -0
- test/cats/cats_00094.jpg +0 -0
- test/cats/cats_00095.jpg +0 -0
- test/cats/cats_00096.jpg +0 -0
- test/cats/cats_00097.jpg +0 -0
- test/cats/cats_00098.jpg +0 -0
- test/cats/cats_00099.jpg +0 -0
- test/cats/cats_00100.jpg +0 -0
- test/dogs/dogs_00091.jpg +0 -0
- test/dogs/dogs_00092.jpg +0 -0
- test/dogs/dogs_00093.jpg +0 -0
- test/dogs/dogs_00094.jpg +0 -0
- test/dogs/dogs_00095.jpg +0 -0
- test/dogs/dogs_00096.jpg +0 -0
- test/dogs/dogs_00097.jpg +0 -0
- test/dogs/dogs_00098.jpg +0 -0
- test/dogs/dogs_00099.jpg +0 -0
- test/dogs/dogs_00100.jpg +0 -0
- test/panda/panda_00091.jpg +0 -0
- test/panda/panda_00092.jpg +0 -0
- test/panda/panda_00093.jpg +0 -0
- test/panda/panda_00094.jpg +0 -0
- test/panda/panda_00095.jpg +0 -0
- test/panda/panda_00096.jpg +0 -0
- test/panda/panda_00097.jpg +0 -0
- test/panda/panda_00098.jpg +0 -0
- test/panda/panda_00099.jpg +0 -0
- test/panda/panda_00100.jpg +0 -0
- train/cats/cats_00001.jpg +0 -0
- train/cats/cats_00002.jpg +0 -0
- train/cats/cats_00003.jpg +0 -0
- train/cats/cats_00004.jpg +0 -0
- train/cats/cats_00005.jpg +0 -0
- train/cats/cats_00006.jpg +0 -0
- train/cats/cats_00007.jpg +0 -0
- train/cats/cats_00008.jpg +0 -0
- train/cats/cats_00009.jpg +0 -0
- train/cats/cats_00010.jpg +0 -0
- train/cats/cats_00011.jpg +0 -0
- train/cats/cats_00012.jpg +0 -0
- train/cats/cats_00013.jpg +0 -0
- train/cats/cats_00014.jpg +0 -0
- train/cats/cats_00015.jpg +0 -0
- train/cats/cats_00016.jpg +0 -0
- train/cats/cats_00017.jpg +0 -0
- train/cats/cats_00018.jpg +0 -0
- train/cats/cats_00019.jpg +0 -0
main.ipynb
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"#import libraries\n",
|
10 |
+
"import torch \n",
|
11 |
+
"from torchvision import datasets, transforms \n",
|
12 |
+
"import torch.nn as nn\n",
|
13 |
+
"import torch.optim as optim\n",
|
14 |
+
"from torch.utils.data import DataLoader\n",
|
15 |
+
"from torchvision.datasets import ImageFolder\n",
|
16 |
+
"\n"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 3,
|
22 |
+
"metadata": {},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"#define the data transforms\n",
|
26 |
+
"\n",
|
27 |
+
"transform = transforms.Compose([\n",
|
28 |
+
" transforms.Resize((224,224)),\n",
|
29 |
+
" transforms.ToTensor(),\n",
|
30 |
+
" transforms.Normalize((0.485,0.456,0.406),(0.229,0.224,0.225))\n",
|
31 |
+
" ])"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": 5,
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [],
|
39 |
+
"source": [
|
40 |
+
"#insert the datasets\n",
|
41 |
+
"\n",
|
42 |
+
"train_dataset = ImageFolder('./data/train', transform=transform)\n",
|
43 |
+
"test_dataset =ImageFolder('./data/test', transform=transform)\n"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": 11,
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"# make cnn model\n",
|
53 |
+
"\n",
|
54 |
+
"class CNN(nn.Module):\n",
|
55 |
+
" def __init__(self):\n",
|
56 |
+
" super(CNN, self).__init__()\n",
|
57 |
+
" self.conv1 = nn.Conv2d(3, 6, 5)\n",
|
58 |
+
" self.conv2 = nn.Conv2d(6, 16, 5)\n",
|
59 |
+
" self.pool = nn.MaxPool2d(2, 2)\n",
|
60 |
+
" self.fc1 = nn.Linear(16 * 53 * 53, 120)\n",
|
61 |
+
" self.fc2 = nn.Linear(120, 84)\n",
|
62 |
+
" self.fc3 = nn.Linear(84, 3)\n",
|
63 |
+
"\n",
|
64 |
+
" def forward(self, x):\n",
|
65 |
+
" x = self.conv1(x)\n",
|
66 |
+
" x = self.pool(x)\n",
|
67 |
+
" x = self.conv2(x)\n",
|
68 |
+
" x = self.pool(x)\n",
|
69 |
+
" x = x.view(-1, 16 * 53 * 53)\n",
|
70 |
+
" x = self.fc1(x)\n",
|
71 |
+
" x = self.fc2(x)\n",
|
72 |
+
" x = self.fc3(x)\n",
|
73 |
+
" return x\n",
|
74 |
+
"\n",
|
75 |
+
" \n",
|
76 |
+
"\n"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 12,
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [],
|
84 |
+
"source": [
|
85 |
+
"batch_size = 8\n"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 13,
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [],
|
93 |
+
"source": [
|
94 |
+
"train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n",
|
95 |
+
"test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)\n"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": 14,
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"model = CNN()\n",
|
105 |
+
"loss_function = nn.CrossEntropyLoss()\n",
|
106 |
+
"optimizer = optim.Adam(model.parameters(), lr=0.001)"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "code",
|
111 |
+
"execution_count": 15,
|
112 |
+
"metadata": {},
|
113 |
+
"outputs": [
|
114 |
+
{
|
115 |
+
"name": "stdout",
|
116 |
+
"output_type": "stream",
|
117 |
+
"text": [
|
118 |
+
"Epoch [1/10], Step [1/34], Loss: 1.0981\n",
|
119 |
+
"Epoch [2/10], Step [1/34], Loss: 1.2921\n",
|
120 |
+
"Epoch [3/10], Step [1/34], Loss: 0.4883\n",
|
121 |
+
"Epoch [4/10], Step [1/34], Loss: 0.3408\n",
|
122 |
+
"Epoch [5/10], Step [1/34], Loss: 0.1063\n",
|
123 |
+
"Epoch [6/10], Step [1/34], Loss: 0.0406\n",
|
124 |
+
"Epoch [7/10], Step [1/34], Loss: 0.0009\n",
|
125 |
+
"Epoch [8/10], Step [1/34], Loss: 0.0066\n",
|
126 |
+
"Epoch [9/10], Step [1/34], Loss: 0.0009\n",
|
127 |
+
"Epoch [10/10], Step [1/34], Loss: 0.0012\n"
|
128 |
+
]
|
129 |
+
}
|
130 |
+
],
|
131 |
+
"source": [
|
132 |
+
"#Train the model\n",
|
133 |
+
"\n",
|
134 |
+
"for epoch in range(10):\n",
|
135 |
+
" for i, (images, labels) in enumerate(train_loader):\n",
|
136 |
+
"\n",
|
137 |
+
" outputs = model(images)\n",
|
138 |
+
"\n",
|
139 |
+
" loss = loss_function(outputs, labels)\n",
|
140 |
+
"\n",
|
141 |
+
" optimizer.zero_grad()\n",
|
142 |
+
" loss.backward()\n",
|
143 |
+
" optimizer.step()\n",
|
144 |
+
"\n",
|
145 |
+
" if i % 200 == 0:\n",
|
146 |
+
" print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch + 1, 10, i + 1, len(train_loader), loss.item()))"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": 16,
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [],
|
154 |
+
"source": [
|
155 |
+
"#iterate over the test data \n",
|
156 |
+
"\n",
|
157 |
+
"correct = 0\n",
|
158 |
+
"total = 0\n",
|
159 |
+
"for i, (images, labels) in enumerate(test_loader):\n",
|
160 |
+
" outputs = model(images)\n",
|
161 |
+
" \n",
|
162 |
+
" _, predicted = torch.max(outputs.data, 1)\n",
|
163 |
+
" correct += (predicted == labels).sum().item()\n",
|
164 |
+
" total += labels.size(0)\n"
|
165 |
+
]
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"cell_type": "code",
|
169 |
+
"execution_count": 17,
|
170 |
+
"metadata": {},
|
171 |
+
"outputs": [
|
172 |
+
{
|
173 |
+
"name": "stdout",
|
174 |
+
"output_type": "stream",
|
175 |
+
"text": [
|
176 |
+
"Accuracy: 53.333333333333336%\n"
|
177 |
+
]
|
178 |
+
}
|
179 |
+
],
|
180 |
+
"source": [
|
181 |
+
"#calculate the accuracy\n",
|
182 |
+
"accuracy = 100 * correct / total\n",
|
183 |
+
"print('Accuracy: {}%' .format(accuracy))"
|
184 |
+
]
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"cell_type": "code",
|
188 |
+
"execution_count": 19,
|
189 |
+
"metadata": {},
|
190 |
+
"outputs": [],
|
191 |
+
"source": [
|
192 |
+
"model_scripted = torch.jit.script(model)\n",
|
193 |
+
"model_scripted.save('./models/cat_dog_cnn.pt')"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"cell_type": "code",
|
198 |
+
"execution_count": null,
|
199 |
+
"metadata": {},
|
200 |
+
"outputs": [],
|
201 |
+
"source": []
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"metadata": {
|
205 |
+
"kernelspec": {
|
206 |
+
"display_name": "base",
|
207 |
+
"language": "python",
|
208 |
+
"name": "python3"
|
209 |
+
},
|
210 |
+
"language_info": {
|
211 |
+
"codemirror_mode": {
|
212 |
+
"name": "ipython",
|
213 |
+
"version": 3
|
214 |
+
},
|
215 |
+
"file_extension": ".py",
|
216 |
+
"mimetype": "text/x-python",
|
217 |
+
"name": "python",
|
218 |
+
"nbconvert_exporter": "python",
|
219 |
+
"pygments_lexer": "ipython3",
|
220 |
+
"version": "3.9.12"
|
221 |
+
}
|
222 |
+
},
|
223 |
+
"nbformat": 4,
|
224 |
+
"nbformat_minor": 2
|
225 |
+
}
|
test/cats/cats_00091.jpg
ADDED
![]() |
test/cats/cats_00092.jpg
ADDED
![]() |
test/cats/cats_00093.jpg
ADDED
![]() |
test/cats/cats_00094.jpg
ADDED
![]() |
test/cats/cats_00095.jpg
ADDED
![]() |
test/cats/cats_00096.jpg
ADDED
![]() |
test/cats/cats_00097.jpg
ADDED
![]() |
test/cats/cats_00098.jpg
ADDED
![]() |
test/cats/cats_00099.jpg
ADDED
![]() |
test/cats/cats_00100.jpg
ADDED
![]() |
test/dogs/dogs_00091.jpg
ADDED
![]() |
test/dogs/dogs_00092.jpg
ADDED
![]() |
test/dogs/dogs_00093.jpg
ADDED
![]() |
test/dogs/dogs_00094.jpg
ADDED
![]() |
test/dogs/dogs_00095.jpg
ADDED
![]() |
test/dogs/dogs_00096.jpg
ADDED
![]() |
test/dogs/dogs_00097.jpg
ADDED
![]() |
test/dogs/dogs_00098.jpg
ADDED
![]() |
test/dogs/dogs_00099.jpg
ADDED
![]() |
test/dogs/dogs_00100.jpg
ADDED
![]() |
test/panda/panda_00091.jpg
ADDED
![]() |
test/panda/panda_00092.jpg
ADDED
![]() |
test/panda/panda_00093.jpg
ADDED
![]() |
test/panda/panda_00094.jpg
ADDED
![]() |
test/panda/panda_00095.jpg
ADDED
![]() |
test/panda/panda_00096.jpg
ADDED
![]() |
test/panda/panda_00097.jpg
ADDED
![]() |
test/panda/panda_00098.jpg
ADDED
![]() |
test/panda/panda_00099.jpg
ADDED
![]() |
test/panda/panda_00100.jpg
ADDED
![]() |
train/cats/cats_00001.jpg
ADDED
![]() |
train/cats/cats_00002.jpg
ADDED
![]() |
train/cats/cats_00003.jpg
ADDED
![]() |
train/cats/cats_00004.jpg
ADDED
![]() |
train/cats/cats_00005.jpg
ADDED
![]() |
train/cats/cats_00006.jpg
ADDED
![]() |
train/cats/cats_00007.jpg
ADDED
![]() |
train/cats/cats_00008.jpg
ADDED
![]() |
train/cats/cats_00009.jpg
ADDED
![]() |
train/cats/cats_00010.jpg
ADDED
![]() |
train/cats/cats_00011.jpg
ADDED
![]() |
train/cats/cats_00012.jpg
ADDED
![]() |
train/cats/cats_00013.jpg
ADDED
![]() |
train/cats/cats_00014.jpg
ADDED
![]() |
train/cats/cats_00015.jpg
ADDED
![]() |
train/cats/cats_00016.jpg
ADDED
![]() |
train/cats/cats_00017.jpg
ADDED
![]() |
train/cats/cats_00018.jpg
ADDED
![]() |
train/cats/cats_00019.jpg
ADDED
![]() |