Commit 1
Browse files- app.py +33 -0
- app_data/cat.jpg +0 -0
- app_data/dog.jpg +0 -0
- app_data/panda.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torchvision import transforms
|
4 |
+
|
5 |
+
model = torch.jit.load("./models/cat_dog_cnn.pt")
|
6 |
+
model.eval()
|
7 |
+
|
8 |
+
|
9 |
+
transform = transforms.Compose([
|
10 |
+
transforms.Resize((224,224)),
|
11 |
+
transforms.ToTensor(),
|
12 |
+
transforms.Normalize((0.485,0.456,0.406),(0.229,0.224,0.225))
|
13 |
+
])
|
14 |
+
|
15 |
+
CLASSES = ["Cat", "Dog", "Panda"]
|
16 |
+
|
17 |
+
def classify_image(inp):
|
18 |
+
inp = transform(inp).unsqueeze(0)
|
19 |
+
out = model(inp)
|
20 |
+
return CLASSES[out.argmax().item()]
|
21 |
+
|
22 |
+
iface = gr.Interface(fn=classify_image,
|
23 |
+
inputs=gr.Image(type="pil", label="Input Image"),
|
24 |
+
outputs="text",
|
25 |
+
examples=[
|
26 |
+
|
27 |
+
"./app_data/cat.jpg",
|
28 |
+
"./app_data/dog.jpg",
|
29 |
+
"./app_data/panda.jpg",
|
30 |
+
|
31 |
+
|
32 |
+
])
|
33 |
+
iface.launch()
|
app_data/cat.jpg
ADDED
![]() |
app_data/dog.jpg
ADDED
![]() |
app_data/panda.jpg
ADDED
![]() |