Spaces:
Runtime error
Runtime error
Nef Caballero
commited on
Commit
·
1f02a81
1
Parent(s):
be70f8e
fix attempt for HG error 3
Browse files
app.py
CHANGED
|
@@ -127,253 +127,102 @@ import_custom_nodes()
|
|
| 127 |
# Now import and use NODE_CLASS_MAPPINGS
|
| 128 |
from nodes import NODE_CLASS_MAPPINGS
|
| 129 |
|
|
|
|
| 130 |
try:
|
| 131 |
-
|
| 132 |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
except KeyError as e:
|
| 134 |
print(f"Error: Could not find node {e} in NODE_CLASS_MAPPINGS")
|
| 135 |
print("Available nodes:", list(NODE_CLASS_MAPPINGS.keys()))
|
| 136 |
raise
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
#To be added to `model_loaders` as it loads a model
|
| 152 |
-
unetloader_358 = unetloader.load_unet(
|
| 153 |
-
unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
|
| 154 |
-
)
|
| 155 |
-
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
|
| 156 |
-
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
|
| 157 |
-
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
| 158 |
-
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
|
| 159 |
-
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS[
|
| 160 |
-
"DownloadAndLoadDepthAnythingV2Model"
|
| 161 |
-
]()
|
| 162 |
-
|
| 163 |
-
#To be added to `model_loaders` as it loads a model
|
| 164 |
-
downloadandloaddepthanythingv2model_437 = (
|
| 165 |
-
downloadandloaddepthanythingv2model.loadmodel(
|
| 166 |
-
model="depth_anything_v2_vitl_fp32.safetensors"
|
| 167 |
-
)
|
| 168 |
-
)
|
| 169 |
-
instructpixtopixconditioning = NODE_CLASS_MAPPINGS[
|
| 170 |
-
"InstructPixToPixConditioning"
|
| 171 |
-
]()
|
| 172 |
-
text_multiline_454 = NODE_CLASS_MAPPINGS["Text Multiline"].text_multiline(text="FLUX_Redux")
|
| 173 |
-
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
|
| 174 |
-
|
| 175 |
-
#To be added to `model_loaders` as it loads a model
|
| 176 |
-
clipvisionloader_438 = clipvisionloader.load_clip(
|
| 177 |
-
clip_name="sigclip_vision_patch14_384.safetensors"
|
| 178 |
-
)
|
| 179 |
-
clipvisionencode = NODE_CLASS_MAPPINGS["CLIPVisionEncode"]()
|
| 180 |
-
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
| 181 |
-
|
| 182 |
-
#To be added to `model_loaders` as it loads a model
|
| 183 |
-
stylemodelloader_441 = stylemodelloader.load_style_model(
|
| 184 |
-
style_model_name="flux1-redux-dev.safetensors"
|
| 185 |
-
)
|
| 186 |
-
text_multiline = NODE_CLASS_MAPPINGS["Text Multiline"]()
|
| 187 |
-
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
|
| 188 |
-
cr_conditioning_input_switch = NODE_CLASS_MAPPINGS[
|
| 189 |
-
"CR Conditioning Input Switch"
|
| 190 |
-
]()
|
| 191 |
-
cr_model_input_switch = NODE_CLASS_MAPPINGS["CR Model Input Switch"]()
|
| 192 |
-
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
|
| 193 |
-
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
|
| 194 |
-
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
|
| 195 |
-
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
|
| 196 |
-
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
| 197 |
-
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
|
| 198 |
-
imagecrop = NODE_CLASS_MAPPINGS["ImageCrop+"]()
|
| 199 |
-
|
| 200 |
-
#Add all the models that load a safetensors file
|
| 201 |
-
model_loaders = [dualcliploader.load_clip(
|
| 202 |
-
clip_name1="t5/t5xxl_fp16.safetensors",
|
| 203 |
-
clip_name2="clip_l.safetensors",
|
| 204 |
-
type="flux",
|
| 205 |
-
), vaeloader_359, unetloader_358, clipvisionloader_438, stylemodelloader_441, downloadandloaddepthanythingv2model_437]
|
| 206 |
|
| 207 |
-
# Check which models are valid
|
| 208 |
valid_models = [
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
|
| 212 |
]
|
| 213 |
|
| 214 |
-
#Finally loads the models
|
| 215 |
-
model_management.load_models_gpu(valid_models)
|
| 216 |
-
|
| 217 |
@spaces.GPU(duration=60)
|
| 218 |
def generate_image(prompt, structure_image, style_image, depth_strength, style_strength):
|
| 219 |
with torch.inference_mode():
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
|
|
|
|
|
|
| 233 |
clip_name1="t5/t5xxl_fp16.safetensors",
|
| 234 |
clip_name2="clip_l.safetensors",
|
| 235 |
type="flux",
|
| 236 |
), 0),
|
|
|
|
| 237 |
)
|
| 238 |
-
|
| 239 |
-
cliptextencode_174 = cliptextencode.encode(
|
| 240 |
-
text=prompt,
|
| 241 |
-
clip=get_value_at_index(cr_clip_input_switch_319, 0),
|
| 242 |
-
)
|
| 243 |
-
|
| 244 |
-
cliptextencode_175 = cliptextencode.encode(
|
| 245 |
-
text="purple", clip=get_value_at_index(cr_clip_input_switch_319, 0)
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
loadimage_429 = loadimage.load_image(image=structure_image)
|
| 249 |
-
|
| 250 |
-
imageresize_72 = imageresize.execute(
|
| 251 |
-
width=get_value_at_index(intconstant_83, 0),
|
| 252 |
-
height=get_value_at_index(intconstant_84, 0),
|
| 253 |
-
interpolation="bicubic",
|
| 254 |
-
method="keep proportion",
|
| 255 |
-
condition="always",
|
| 256 |
-
multiple_of=16,
|
| 257 |
-
image=get_value_at_index(loadimage_429, 0),
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
getimagesizeandcount_360 = getimagesizeandcount.getsize(
|
| 261 |
-
image=get_value_at_index(imageresize_72, 0)
|
| 262 |
-
)
|
| 263 |
-
|
| 264 |
-
vaeencode_197 = vaeencode.encode(
|
| 265 |
-
pixels=get_value_at_index(getimagesizeandcount_360, 0),
|
| 266 |
-
vae=get_value_at_index(vaeloader_359, 0),
|
| 267 |
-
)
|
| 268 |
-
|
| 269 |
-
ksamplerselect_363 = ksamplerselect.get_sampler(sampler_name="euler")
|
| 270 |
-
|
| 271 |
-
randomnoise_365 = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
|
| 272 |
-
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
)
|
| 277 |
-
|
| 278 |
-
depthanything_v2_436 = depthanything_v2.process(
|
| 279 |
-
da_model=get_value_at_index(downloadandloaddepthanythingv2model_437, 0),
|
| 280 |
-
images=get_value_at_index(getimagesizeandcount_360, 0),
|
| 281 |
-
)
|
| 282 |
-
|
| 283 |
-
instructpixtopixconditioning_431 = instructpixtopixconditioning.encode(
|
| 284 |
-
positive=get_value_at_index(fluxguidance_430, 0),
|
| 285 |
-
negative=get_value_at_index(cliptextencode_175, 0),
|
| 286 |
-
vae=get_value_at_index(vaeloader_359, 0),
|
| 287 |
-
pixels=get_value_at_index(depthanything_v2_436, 0),
|
| 288 |
-
)
|
| 289 |
-
|
| 290 |
-
loadimage_440 = loadimage.load_image(image=style_image)
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
)
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
height=get_value_at_index(imageresize_72, 2),
|
| 302 |
-
batch_size=1,
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
cr_conditioning_input_switch_271 = cr_conditioning_input_switch.switch(
|
| 306 |
-
Input=1,
|
| 307 |
-
conditioning1=get_value_at_index(instructpixtopixconditioning_431, 0),
|
| 308 |
-
conditioning2=get_value_at_index(instructpixtopixconditioning_431, 0),
|
| 309 |
-
)
|
| 310 |
-
|
| 311 |
-
cr_conditioning_input_switch_272 = cr_conditioning_input_switch.switch(
|
| 312 |
-
Input=1,
|
| 313 |
-
conditioning1=get_value_at_index(instructpixtopixconditioning_431, 1),
|
| 314 |
-
conditioning2=get_value_at_index(instructpixtopixconditioning_431, 1),
|
| 315 |
-
)
|
| 316 |
-
|
| 317 |
-
cr_model_input_switch_320 = cr_model_input_switch.switch(
|
| 318 |
-
Input=1,
|
| 319 |
-
model1=get_value_at_index(unetloader_358, 0),
|
| 320 |
-
model2=get_value_at_index(unetloader_358, 0),
|
| 321 |
-
)
|
| 322 |
-
|
| 323 |
-
stylemodelapplyadvanced_442 = stylemodelapplyadvanced.apply_stylemodel(
|
| 324 |
-
strength=style_strength,
|
| 325 |
-
conditioning=get_value_at_index(instructpixtopixconditioning_431, 0),
|
| 326 |
-
style_model=get_value_at_index(stylemodelloader_441, 0),
|
| 327 |
-
clip_vision_output=get_value_at_index(clipvisionencode_439, 0),
|
| 328 |
-
)
|
| 329 |
-
|
| 330 |
-
basicguider_366 = basicguider.get_guider(
|
| 331 |
-
model=get_value_at_index(cr_model_input_switch_320, 0),
|
| 332 |
-
conditioning=get_value_at_index(stylemodelapplyadvanced_442, 0),
|
| 333 |
-
)
|
| 334 |
-
|
| 335 |
-
basicscheduler_364 = basicscheduler.get_sigmas(
|
| 336 |
-
scheduler="simple",
|
| 337 |
-
steps=28,
|
| 338 |
-
denoise=1,
|
| 339 |
-
model=get_value_at_index(cr_model_input_switch_320, 0),
|
| 340 |
-
)
|
| 341 |
-
|
| 342 |
-
samplercustomadvanced_362 = samplercustomadvanced.sample(
|
| 343 |
-
noise=get_value_at_index(randomnoise_365, 0),
|
| 344 |
-
guider=get_value_at_index(basicguider_366, 0),
|
| 345 |
-
sampler=get_value_at_index(ksamplerselect_363, 0),
|
| 346 |
-
sigmas=get_value_at_index(basicscheduler_364, 0),
|
| 347 |
-
latent_image=get_value_at_index(emptylatentimage_10, 0),
|
| 348 |
-
)
|
| 349 |
-
|
| 350 |
-
vaedecode_321 = vaedecode.decode(
|
| 351 |
-
samples=get_value_at_index(samplercustomadvanced_362, 0),
|
| 352 |
-
vae=get_value_at_index(vaeloader_359, 0),
|
| 353 |
-
)
|
| 354 |
-
|
| 355 |
-
saveimage_327 = saveimage.save_images(
|
| 356 |
-
filename_prefix=get_value_at_index(text_multiline_454, 0),
|
| 357 |
-
images=get_value_at_index(vaedecode_321, 0),
|
| 358 |
-
)
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
fluxguidance_382 = fluxguidance.append(
|
| 362 |
-
guidance=depth_strength,
|
| 363 |
-
conditioning=get_value_at_index(cr_conditioning_input_switch_272, 0),
|
| 364 |
-
)
|
| 365 |
-
|
| 366 |
-
imagecrop_447 = imagecrop.execute(
|
| 367 |
-
width=2000,
|
| 368 |
-
height=2000,
|
| 369 |
-
position="top-center",
|
| 370 |
-
x_offset=0,
|
| 371 |
-
y_offset=0,
|
| 372 |
-
image=get_value_at_index(loadimage_440, 0),
|
| 373 |
-
)
|
| 374 |
-
|
| 375 |
-
saved_path = f"output/{saveimage_327['ui']['images'][0]['filename']}"
|
| 376 |
-
return saved_path
|
| 377 |
|
| 378 |
if __name__ == "__main__":
|
| 379 |
# Comment out the main() call
|
|
|
|
| 127 |
# Now import and use NODE_CLASS_MAPPINGS
|
| 128 |
from nodes import NODE_CLASS_MAPPINGS
|
| 129 |
|
| 130 |
+
# Create instances of the nodes we'll use
|
| 131 |
try:
|
| 132 |
+
# Load required models
|
| 133 |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
| 134 |
+
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
| 135 |
+
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
|
| 136 |
+
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
|
| 137 |
+
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
| 138 |
+
|
| 139 |
+
# Image processing nodes
|
| 140 |
+
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
| 141 |
+
imagescale = NODE_CLASS_MAPPINGS["ImageScale"]()
|
| 142 |
+
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
| 143 |
+
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]()
|
| 144 |
+
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
|
| 145 |
+
|
| 146 |
+
# Conditioning and sampling nodes
|
| 147 |
+
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
| 148 |
+
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
|
| 149 |
+
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
|
| 150 |
+
|
| 151 |
except KeyError as e:
|
| 152 |
print(f"Error: Could not find node {e} in NODE_CLASS_MAPPINGS")
|
| 153 |
print("Available nodes:", list(NODE_CLASS_MAPPINGS.keys()))
|
| 154 |
raise
|
| 155 |
|
| 156 |
+
# Load all the models that need a safetensors file
|
| 157 |
+
model_loaders = [
|
| 158 |
+
dualcliploader.load_clip(
|
| 159 |
+
clip_name1="t5/t5xxl_fp16.safetensors",
|
| 160 |
+
clip_name2="clip_l.safetensors",
|
| 161 |
+
type="flux",
|
| 162 |
+
),
|
| 163 |
+
vaeloader.load_vae("vae/FLUX1/ae.safetensors"),
|
| 164 |
+
unetloader.load_unet("diffusion_models/flux1-depth-dev.safetensors"),
|
| 165 |
+
clipvisionloader.load_clip("clip_vision/sigclip_vision_patch14_384.safetensors"),
|
| 166 |
+
stylemodelloader.load_style_model("style_models/flux1-redux-dev.safetensors")
|
| 167 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
# Check which models are valid
|
| 170 |
valid_models = [
|
| 171 |
+
model for model in model_loaders
|
| 172 |
+
if model is not None and len(model) > 0
|
|
|
|
| 173 |
]
|
| 174 |
|
|
|
|
|
|
|
|
|
|
| 175 |
@spaces.GPU(duration=60)
|
| 176 |
def generate_image(prompt, structure_image, style_image, depth_strength, style_strength):
|
| 177 |
with torch.inference_mode():
|
| 178 |
+
# Set up image dimensions
|
| 179 |
+
width = 1024
|
| 180 |
+
height = 1024
|
| 181 |
|
| 182 |
+
# Load and process the input images
|
| 183 |
+
loaded_structure = loadimage.load_image(structure_image)
|
| 184 |
+
loaded_style = loadimage.load_image(style_image)
|
| 185 |
+
|
| 186 |
+
# Scale images if needed
|
| 187 |
+
scaled_structure = imagescale.upscale(loaded_structure, width, height, "lanczos", "center")
|
| 188 |
+
scaled_style = imagescale.upscale(loaded_style, width, height, "lanczos", "center")
|
| 189 |
+
|
| 190 |
+
# Create empty latent
|
| 191 |
+
latent = emptylatentimage.generate(width, height, 1)
|
| 192 |
+
|
| 193 |
+
# Encode the prompt
|
| 194 |
+
conditioning = cliptextencode.encode(
|
| 195 |
+
clip=get_value_at_index(dualcliploader.load_clip(
|
| 196 |
clip_name1="t5/t5xxl_fp16.safetensors",
|
| 197 |
clip_name2="clip_l.safetensors",
|
| 198 |
type="flux",
|
| 199 |
), 0),
|
| 200 |
+
text=prompt
|
| 201 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
# Sample the image
|
| 204 |
+
sampled = ksampler.sample(
|
| 205 |
+
model=get_value_at_index(unetloader.load_unet("diffusion_models/flux1-depth-dev.safetensors"), 0),
|
| 206 |
+
positive=conditioning,
|
| 207 |
+
negative=None,
|
| 208 |
+
latent=latent,
|
| 209 |
+
seed=random.randint(1, 2**32),
|
| 210 |
+
steps=20,
|
| 211 |
+
cfg=7.5,
|
| 212 |
+
sampler_name="euler",
|
| 213 |
+
scheduler="normal",
|
| 214 |
+
denoise=1.0,
|
| 215 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
+
# Decode the latent to image
|
| 218 |
+
decoded = vaedecode.decode(
|
| 219 |
+
samples=sampled,
|
| 220 |
+
vae=get_value_at_index(vaeloader.load_vae("vae/FLUX1/ae.safetensors"), 0)
|
| 221 |
)
|
| 222 |
|
| 223 |
+
# Save the final image
|
| 224 |
+
saved = saveimage.save_images(decoded)
|
| 225 |
+
return saved
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
if __name__ == "__main__":
|
| 228 |
# Comment out the main() call
|