Spaces:
Runtime error
Runtime error
File size: 10,336 Bytes
2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 97e33a3 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 5b0d6ce 2b6048b 3c8139b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from os import getenv
from pathlib import Path
from typing import Optional
import gradio as gr
import numpy as np
import onnxruntime as rt
from PIL import Image
from tagger.common import LabelData, load_labels_hf, preprocess_image
from tagger.model import create_session
TITLE = "WaifuDiffusion Tagger"
DESCRIPTION = """
Tag images with the WaifuDiffusion Tagger models!
Primarily used as a backend for a Discord bot.
"""
HF_TOKEN = getenv("HF_TOKEN", None)
MODEL_VARIANTS: dict[str, str] = {
"v3": {
"SwinV2": "SmilingWolf/wd-swinv2-tagger-v3",
"ConvNeXT": "SmilingWolf/wd-convnext-tagger-v3",
"ViT": "SmilingWolf/wd-vit-tagger-v3",
},
"v2": {
"MOAT": "SmilingWolf/wd-v1-4-moat-tagger-v2",
"SwinV2": "SmilingWolf/wd-v1-4-swinv2-tagger-v2",
"ConvNeXT": "SmilingWolf/wd-v1-4-convnext-tagger-v2",
"ConvNeXTv2": "SmilingWolf/wd-v1-4-convnextv2-tagger-v2",
"ViT": "SmilingWolf/wd-v1-4-vit-tagger-v2",
},
}
# prepopulate cache keys in model cache
cache_keys = ["-".join([x, y]) for x in MODEL_VARIANTS.keys() for y in MODEL_VARIANTS[x].keys()]
loaded_models: dict[str, Optional[rt.InferenceSession]] = {k: None for k in cache_keys}
# get the repo root (or the current working directory if running in ipython)
WORK_DIR = Path(__file__).parent.resolve() if "__file__" in globals() else Path().resolve()
# allowed extensions
IMAGE_EXTENSIONS = [".jpg", ".jpeg", ".png", ".gif", ".webp", ".bmp", ".tiff", ".tif"]
# get the example images
example_images = sorted(
[
str(x.relative_to(WORK_DIR))
for x in WORK_DIR.joinpath("examples").iterdir()
if x.is_file() and x.suffix.lower() in IMAGE_EXTENSIONS
]
)
def load_model(version: str, variant: str) -> rt.InferenceSession:
global loaded_models
# resolve the repo name
model_repo = MODEL_VARIANTS.get(version, {}).get(variant, None)
if model_repo is None:
raise ValueError(f"Unknown model variant: {version}-{variant}")
cache_key = f"{version}-{variant}"
if loaded_models.get(cache_key, None) is None:
# save model to cache
loaded_models[cache_key] = create_session(model_repo, token=HF_TOKEN)
return loaded_models[cache_key]
def mcut_threshold(probs: np.ndarray) -> float:
"""
Maximum Cut Thresholding (MCut)
Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy
for Multi-label Classification. In 11th International Symposium, IDA 2012
(pp. 172-183).
"""
probs = probs[probs.argsort()[::-1]]
diffs = probs[:-1] - probs[1:]
idx = diffs.argmax()
thresh = (probs[idx] + probs[idx + 1]) / 2
return float(thresh)
def predict(
image: Image.Image,
version: str,
variant: str,
gen_threshold: float = 0.35,
gen_use_mcut: bool = False,
char_threshold: float = 0.85,
char_use_mcut: bool = False,
):
# join variant for cache key
model: rt.InferenceSession = load_model(version, variant)
# load labels
labels: LabelData = load_labels_hf(MODEL_VARIANTS[version][variant])
# get input size and name
_, h, w, _ = model.get_inputs()[0].shape
input_name = model.get_inputs()[0].name
output_name = model.get_outputs()[0].name
# preprocess image
image = preprocess_image(image, (h, w))
# turn into BGR24 numpy array of N,H,W,C since thats what these want
inputs = image.convert("RGB").convert("BGR;24")
inputs = np.array(inputs).astype(np.float32)
inputs = np.expand_dims(inputs, axis=0)
# Run the ONNX model
probs = model.run([output_name], {input_name: inputs})
# Convert indices+probs to labels
probs = list(zip(labels.names, probs[0][0].astype(float)))
# First 4 labels are actually ratings
rating_labels = dict([probs[i] for i in labels.rating])
# General labels, pick any where prediction confidence > threshold
if gen_use_mcut:
gen_array = np.array([probs[i][1] for i in labels.general])
gen_threshold = mcut_threshold(gen_array)
gen_labels = [probs[i] for i in labels.general]
gen_labels = dict([x for x in gen_labels if x[1] > gen_threshold])
gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))
# Character labels, pick any where prediction confidence > threshold
if char_use_mcut:
char_array = np.array([probs[i][1] for i in labels.character])
char_threshold = round(mcut_threshold(char_array), 2)
char_labels = [probs[i] for i in labels.character]
char_labels = dict([x for x in char_labels if x[1] > char_threshold])
char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))
# Combine general and character labels, sort by confidence
combined_names = [x for x in gen_labels]
combined_names.extend([x for x in char_labels])
# Convert to a string suitable for use as a training caption
caption = ", ".join(combined_names)
booru = caption.replace("_", " ").replace("(", "\(").replace(")", "\)")
return image, caption, booru, rating_labels, char_labels, char_threshold, gen_labels, gen_threshold
css = """
#gen_mcut, #char_mcut {
padding-top: var(--scale-3);
}
#gen_threshold.dimmed, #char_threshold.dimmed {
filter: brightness(75%);
}
"""
with gr.Blocks(theme="NoCrypt/miku", analytics_enabled=False, title=TITLE, css=css) as demo:
with gr.Row(equal_height=False):
with gr.Column(min_width=720):
with gr.Group():
img_input = gr.Image(
label="Input",
type="pil",
image_mode="RGB",
sources=["upload", "clipboard"],
)
show_processed = gr.Checkbox(label="Show Preprocessed Image", value=False)
with gr.Row():
version = gr.Radio(
choices=list(MODEL_VARIANTS.keys()),
label="Model Version",
value="v3",
min_width=160,
scale=1,
) # gen_threshold > div.wrap.hide
variant = gr.Radio(
choices=list(MODEL_VARIANTS[version.value].keys()),
label="Model Variant",
value="SwinV2",
min_width=560,
)
with gr.Group():
with gr.Row():
gen_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.35,
step=0.01,
label="General Tag Threshold",
scale=5,
elem_id="gen_threshold",
)
gen_mcut = gr.Checkbox(label="Use Max-Cut", value=False, scale=1, elem_id="gen_mcut")
with gr.Row():
char_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.85,
step=0.01,
label="Character Tag Threshold",
scale=5,
elem_id="char_threshold",
)
char_mcut = gr.Checkbox(label="Use Max-Cut", value=False, scale=1, elem_id="char_mcut")
with gr.Row():
clear = gr.ClearButton(
components=[],
variant="secondary",
size="lg",
)
submit = gr.Button(value="Submit", variant="primary", size="lg")
with gr.Column(min_width=720):
img_output = gr.Image(
label="Preprocessed Image", type="pil", image_mode="RGB", scale=1, visible=False
)
with gr.Group():
caption = gr.Textbox(label="Caption", show_copy_button=True)
tags = gr.Textbox(label="Tags", show_copy_button=True)
with gr.Group():
rating = gr.Label(label="Rating")
with gr.Group():
char_mcut_out = gr.Number(label="Max-Cut Threshold", precision=2, visible=False)
character = gr.Label(label="Character")
with gr.Group():
gen_mcut_out = gr.Number(label="Max-Cut Threshold", precision=2, visible=False)
general = gr.Label(label="General")
with gr.Row():
examples = [[imgpath, 0.35, mc, 0.85, mc] for mc in [False, True] for imgpath in example_images]
examples = gr.Examples(
examples=examples,
inputs=[img_input, gen_threshold, gen_mcut, char_threshold, char_mcut],
)
# tell clear button which components to clear
clear.add([img_input, img_output, caption, rating, character, general])
def on_select_variant(evt: gr.SelectData, variant: str):
if evt.selected:
choices = list(MODEL_VARIANTS[variant])
return gr.update(choices=choices, value=choices[0])
return gr.update()
version.select(on_select_variant, inputs=[version], outputs=[variant])
# show/hide processed image
def on_change_show(val: gr.Checkbox):
return gr.update(visible=val)
show_processed.select(on_change_show, inputs=[show_processed], outputs=[img_output])
# handle mcut thresholding (auto-calculate threshold from probs, disable slider)
def on_change_mcut(val: gr.Checkbox):
return (
gr.update(interactive=not val, elem_classes=["dimmed"] if val else []),
gr.update(visible=val),
)
gen_mcut.change(on_change_mcut, inputs=[gen_mcut], outputs=[gen_threshold, gen_mcut_out])
char_mcut.change(on_change_mcut, inputs=[char_mcut], outputs=[char_threshold, char_mcut_out])
submit.click(
predict,
inputs=[img_input, version, variant, gen_threshold, gen_mcut, char_threshold, char_mcut],
outputs=[img_output, caption, tags, rating, character, char_threshold, general, gen_threshold],
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=10)
if getenv("SPACE_ID", None) is not None:
demo.launch()
else:
demo.launch(
server_name="0.0.0.0",
server_port=7871,
)
|