Spaces:
Running
Running
File size: 1,402 Bytes
26ce2b9 c6d903d 7ff0c05 c6d903d c6d9fb0 bae20b2 7ff0c05 c6d903d a37094d c6d903d 7ff0c05 c6d903d 4a93af1 ed909e7 10d7087 5d35835 89fe9f7 7ff0c05 ab926cc 7ff0c05 ad0751b 6ec95e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
from flask import Flask, jsonify, request, render_template
from transformers import AutoAdapterModel, AutoTokenizer, TextClassificationPipeline
# tokenizer = AutoTokenizer.from_pretrained("UBC-NLP/MARBERT")
# model = AutoAdapterModel.from_pretrained("UBC-NLP/MARBERT")
# sarcasm_adapter = Repository(local_dir="sarcasm_adapter", clone_from="nehalelkaref/sarcasm_adapter")
# aoc3_adapter = Repository(local_dir="aoc3_adapter", clone_from="nehalelkaref/aoc3_adapter")
# aoc4_adapter = Repository(local_dir="aoc4_adapter", clone_from="nehalelkaref/aoc4_adapter")
# fusion_adapter = Repository(local_dir="fusion_adapter", clone_from="nehalelkaref/region_fusion")
# model.load_adapter("nehalelkaref/aoc3_adapter", set_active=True, with_head=False, source="hf")
# model.load_adapter("nehalelkaref/aoc4_adapter", set_active=True, with_head=False, source="hf")
# model.load_adapter("nehalelkaref/sarcasm_adapter", set_active=True, with_head=False, source="hf")
# model.load_adapter_fusion("nehalelkaref/region_fusion",with_head=True, set_active=True, source="hf")
# pipe = TextClassificationPipeline(tokenizer=tokenizer, model=model)
app = Flask(__name__)
@app.route("/", methods=['GET'])
def home():
return render_template('home.html')
@app.route('/classify', methods = ['POST'])
def classify():
return render_template('prediction.html', output=output)
if __name__ == "__main__":
app.run() |