nehalelkaref commited on
Commit
f5769cf
·
1 Parent(s): de4975e

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +5 -34
main.py CHANGED
@@ -1,36 +1,7 @@
 
1
 
2
- from transformers import AutoAdapterModel, AutoTokenizer, TextClassificationPipeline
3
- from huggingface_hub import Repository
4
-
5
- # app = Flask(__name__)
6
-
7
- #define model
8
- tokenizer = AutoTokenizer.from_pretrained("UBC-NLP/MARBERT")
9
-
10
- sarcasm_adapter = Repository(local_dir="sarcasm_adapter", clone_from="nehalelkaref/sarcasm_adapter")
11
- aoc3_adapter = Repository(local_dir="aoc3_adapter", clone_from="nehalelkaref/aoc3_adapter")
12
- aoc4_adapter = Repository(local_dir="aoc4_adapter", clone_from="nehalelkaref/aoc4_adapter")
13
- fusion_adapter = Repository(local_dir="fusion_adapter", clone_from="nehalelkaref/region_fusion")
14
-
15
- model = AutoAdapterModel.from_pretrained("UBC-NLP/MARBERT")
16
-
17
- model.load_adapter("/aoc3_adapter", set_active=True, with_head=False)
18
- model.load_adapter("/aoc4_adapter", set_active=True, with_head=False)
19
- model.load_adapter("/sarcasm_adapter", set_active=True, with_head=False)
20
-
21
- model.load_adapter_fusion("/fusion_adapter/aoc(3),aoc(4),sarcasm",with_head=True, set_active=True)
22
-
23
- pipe = TextClassificationPipeline(tokenizer=tokenizer, model=model)
24
-
25
- # @app.route('/predict', methods=['POST'])
26
- # def predict():
27
- # text = request.json['inputs']
28
-
29
- # prediction = pipe(text)
30
- # labels = {"LABEL_0":"GULF", "LABEL_1":"LEVANT","LABEL_2":"EGYPT"}
31
- # regions = []
32
- # for res in prediction:
33
- # regions.append(labels[res['label']])
34
-
35
- # return jsonify({'response': regions})
36
 
 
 
 
 
1
+ from fastapi import FastAPI
2
 
3
+ app = FastAPI()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ @app.get("/")
6
+ def read_root():
7
+ return {"Hello": "World!"}