Spaces:
Build error
Build error
File size: 1,934 Bytes
62240fd 795587f 1d8d3a1 9675c65 7916f53 795587f 0c23ff5 44e2bdb 62240fd 0c23ff5 ac10e5c 0c23ff5 98173fb 0c23ff5 eaaa625 0c23ff5 3d70b45 0c23ff5 44e2bdb 1195aea 3d70b45 59a84ff 44e2bdb 5c5fdba 870601f 9e6957e 1cfd324 d08e430 1cfd324 d08e430 2892224 2088406 7916f53 5fa08a0 09297aa 0c23ff5 7916f53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import gradio as gr
import numpy as np
from network import SpanNet
from huggingface_hub import Repository
import os
def extract_spannet_scores(path,input_sentence,length, pos_col, task_col):
all_scores = []
model = SpanNet.load_model(model_path=path)
scores = []
model.eval()
out_dict = model(sentences=[input_sentence], output_span_scores=True)
scores.extend([[t.tolist() for t in o[:l]] for o, l in zip(out_dict['span_scores'], length)])
all_scores.append(scores)
return all_scores
def pool_span_scores(score_dicts, sent_lens):
TAGS = ['B', 'I', 'O']
pooled_scores = [[np.argmax([sum([sd[sent_id][token_id][score_id] for sd in score_dicts])
for score_id in range(len(score_dicts[0][sent_id][token_id]))])
for token_id in range(sent_lens[sent_id])]
for sent_id in range(len(sent_lens))]
r = [[TAGS[ps] for ps in sent_ps] for sent_ps in pooled_scores]
return r
def predict_label(text):
model_path = 'models/span.model'
ip = text.split()
ip_len = [len(ip)]
scores = extract_spannet_scores(model_path,ip,ip_len, pos_col=1, task_col=2)
pooled_scores = pool_span_scores(scores, ip_len)
output=''
for op in pooled_scores[0]:
output+= op + ','
print('OUTPUT HERE')
return 'output'
def temp(text):
print('IN FUNCTION')
return text
print('STARTING ..')
# model_path = 'models/span.model'
# model = SpanNet.load_model(model_path)
space_key = os.environ.get('key')
gr.load(name="nehalelkaref/flat-arabic-entity-classification", hf_token=space_key, src='spaces')
iface = gr.Interface(fn=temp, inputs="text", outputs="text", batch=False)
# iface = gr.Interface(fn=predict_label, inputs="text", outputs="text",auth=True)
iface.launch(share=True, blocked_paths=['models'])
iface.launch(show_api=False)
|