Spaces:
Build error
Build error
import gradio as gr | |
import numpy as np | |
import os | |
from huggingface_hub import hf_hub_download | |
from camel_tools.data import CATALOGUE | |
from camel_tools.tagger.default import DefaultTagger | |
from camel_tools.disambig.bert import BERTUnfactoredDisambiguator | |
def predict_label(text): | |
ip = text.split() | |
ip_len = [len(ip)] | |
span_scores = extract_spannet_scores(span_model,ip,ip_len) | |
span_pooled_scores = pool_span_scores(span_scores, ip_len) | |
pos_tags = tagger.tag(ip) | |
msa_span_scores = extract_spannet_scores(msa_span_model,ip,ip_len,pos=pos_tags) | |
msa_pooled_scores = pool_span_scores(msa_span_scores, ip_len) | |
ensemble_span_scores = [score for scores in [span_scores, msa_span_scores] for score in scores] | |
ensemble_pooled_scores = pool_span_scores(ensemble_span_scores, ip_len) | |
ent_scores = extract_ent_scores(entity_model,ip,ensemble_pooled_scores) | |
combined_sequences, ent_pred_tags = pool_ent_scores(ent_scores, ip_len) | |
return combined_sequences | |
if __name__ == '__main__': | |
# space_key = os.environ.get('key') | |
# filenames = ['network.py', 'layers.py', 'utils.py', | |
# 'representation.py', 'predict.py', 'validate.py'] | |
# for file in filenames: | |
# hf_hub_download('nehalelkaref/stagedNER', | |
# filename=file, | |
# local_dir='src', | |
# token=space_key) | |
# CATALOGUE.download_package("all", | |
# recursive=True, | |
# force=True, | |
# print_status=True) | |
# from src.predict import extract_spannet_scores,extract_ent_scores,pool_span_scores,pool_ent_scores | |
# from src.network import SpanNet, EntNet | |
# from src.validate import entities_from_token_classes | |
# diasmbig = BERTUnfactoredDisambiguator.pretrained('msa') | |
# tagger = DefaultTagger(diasmbig, 'pos') | |
# span_path = 'models/span.model' | |
# msa_span_path = 'new_models/msa.best.model' | |
# entity_path= 'models/entity.msa.model' | |
# span_model = SpanNet.load_model(span_path) | |
# msa_span_model = SpanNet.load_model(msa_span_path) | |
# entity_model = EntNet.load_model(entity_path) | |
# iface= gr.Base(primary_hue="green") | |
with gr.Blocks(theme='finlaymacklon/smooth_slate') as iface: | |
example_input=gr.Textbox(label="Input Example", lines=1) | |
gr.Interface(fn=predict_label, inputs="text", outputs="text", | |
theme="smooth_slate") | |
gr.Examples( | |
examples=["النشرة الإخبارية الصادرة عن الأونروا رقم 113 (1986/1/8)."], | |
inputs= example_input) | |
iface.launch(show_api=False) | |