nehalelkaref commited on
Commit
37375ea
·
1 Parent(s): da2e323

Upload representation.py

Browse files
Files changed (1) hide show
  1. representation.py +90 -0
representation.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from transformers import AutoModel, AutoTokenizer
4
+
5
+ DEFAULT_DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
6
+
7
+
8
+ class TransformerRepresentation(nn.Module):
9
+ def __init__(self, model_name='bert-base-uncased',
10
+ transformer_kwargs={'attention_probs_dropout_prob': 0.1,
11
+ 'hidden_dropout_prob': 0.1},
12
+ device=DEFAULT_DEVICE):
13
+ super(TransformerRepresentation, self).__init__()
14
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
15
+ self.model = AutoModel.from_pretrained(model_name,
16
+ output_hidden_states=True,
17
+ **transformer_kwargs)
18
+ self.embedding_dim = self.model.config.hidden_size
19
+ self.device = device
20
+
21
+ @staticmethod
22
+ def add_subword_maps(texts, encodings):
23
+ for encoding, t in zip(encodings, texts):
24
+ encoding.subword_map = [encoding.word_to_tokens(i)
25
+ for i, _ in enumerate(t)]
26
+
27
+ @staticmethod
28
+ def apply_token_pooling_strategy(outputs, encodings, strategy='first'):
29
+ """
30
+ Applies a token pooling strategy for pretokenized inputs based on
31
+ a sub-word mapping of words to tokens.
32
+
33
+ :param outputs: Output of the application of a `TransformerRepresentation.model` to a pretokenized input.
34
+ :param encodings: Encodings from the application of `TransformerRepresentation.tokenizer` to a pretokenized input.
35
+ :param strategy: One of ['first', 'last', 'sum', 'average']. Defaults to 'first'.
36
+ :return:
37
+ """
38
+ vec_map = [[vecs[m[0]:m[1]] for m in encoding.subword_map
39
+ if m is not None] # Only return vectors for words that were not truncated during tokenization
40
+ for vecs, encoding
41
+ in zip(outputs.last_hidden_state.unbind(), encodings)]
42
+ if strategy == 'first':
43
+ return [torch.stack([vec[0] for vec in vm]) if vm else torch.zeros(0) for vm in vec_map]
44
+ elif strategy == 'last':
45
+ return [torch.stack([vec[-1] for vec in vm]) if vm else torch.zeros(0) for vm in vec_map]
46
+ elif strategy == 'sum':
47
+ return [torch.stack([torch.sum(vec, dim=0) for vec in vm]) if vm else torch.zeros(0) for vm in vec_map]
48
+ elif strategy == 'average':
49
+ return [torch.stack([torch.sum(vec, dim=0)/len(vec) for vec in vm]) if vm else torch.zeros(0) for vm in vec_map]
50
+ return vec_map
51
+
52
+ def add_special_tokens(self, tokens):
53
+ self.tokenizer.add_special_tokens({'additional_special_tokens': self.tokenizer.additional_special_tokens + tokens})
54
+ self.model.resize_token_embeddings(len(self.tokenizer))
55
+
56
+ def forward(self, text, is_pretokenized=False, add_special_tokens=True, token_pooling='first'):
57
+ inputs = self.tokenizer(text, padding='longest',
58
+ is_split_into_words=is_pretokenized,
59
+ add_special_tokens=add_special_tokens,
60
+ return_tensors='pt',
61
+ max_length=512,
62
+ truncation=True).to(self.device)
63
+ output = self.model(**inputs.to(self.device))
64
+ if is_pretokenized:
65
+ self.add_subword_maps(text, [i for i in inputs.encodings])
66
+ output.pooled_tokens = self.apply_token_pooling_strategy(
67
+ output, [i for i in inputs.encodings], strategy=token_pooling)
68
+ return output
69
+
70
+
71
+ if __name__ == 'main':
72
+ toks = ['Tom', 'Thabane', 'resigned', 'in', 'October', 'last', 'year',
73
+ 'to', 'form', 'the', 'All', 'Basotho', 'Convention', '-LRB-',
74
+ 'ABC', '-RRB-', ',', 'crossing', 'the', 'floor', 'with', '17',
75
+ 'members', 'of', 'parliament', ',', 'causing', 'constitutional',
76
+ 'monarch', 'King', 'Letsie', 'III', 'to', 'dissolve',
77
+ 'parliament', 'and', 'call', 'the', 'snap', 'election', '.']
78
+ e1_type = 'PERSON'
79
+ e2_type = 'ORGANIZATION'
80
+ e1_tokens = [0, 1]
81
+ e2_tokens = [10, 12]
82
+ text = [['EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'lamb', '.'],
83
+ ['Peter', 'Blackburn'],
84
+ ['BRUSSELS', '1996-08-22'],
85
+ ['The', 'European', 'Commission', 'said', 'on', 'Thursday', 'it', 'disagreed', 'with', 'German', 'advice', 'to', 'consumers', 'to', 'shun', 'British', 'lamb', 'until', 'scientists', 'determine', 'whether', 'mad', 'cow', 'disease', 'can', 'be', 'transmitted', 'to', 'sheep', '.'],
86
+ ['Germany', "'s", 'representative', 'to', 'the', 'European', 'Union', "'s", 'veterinary', 'committee', 'Werner', 'Zwingmann', 'said', 'on', 'Wednesday', 'consumers', 'should', 'buy', 'sheepmeat', 'from', 'countries', 'other', 'than', 'Britain', 'until', 'the', 'scientific', 'advice', 'was', 'clearer', '.'],
87
+ ['"', 'We', 'do', "n't", 'support', 'any', 'such', 'recommendation', 'because', 'we', 'do', "n't", 'see', 'any', 'grounds', 'for', 'it', ',', '"', 'the', 'Commission', "'s", 'chief', 'spokesman', 'Nikolaus', 'van', 'der', 'Pas', 'told', 'a', 'news', 'briefing', '.'],
88
+ ['He', 'said', 'further', 'scientific', 'study', 'was', 'required', 'and', 'if', 'it', 'was', 'found', 'that', 'action', 'was', 'needed', 'it', 'should', 'be', 'taken', 'by', 'the', 'European', 'Union', '.'],
89
+ ['He', 'said', 'a', 'proposal', 'last', 'month', 'by', 'EU', 'Farm', 'Commissioner', 'Franz', 'Fischler', 'to', 'ban', 'sheep', 'brains', ',', 'spleens', 'and', 'spinal', 'cords', 'from', 'the', 'human', 'and', 'animal', 'food', 'chains', 'was', 'a', 'highly', 'specific', 'and', 'precautionary', 'move', 'to', 'protect', 'human', 'health', '.']]
90
+ model = TransformerRepresentation()