nehalelkaref commited on
Commit
4889e9c
·
verified ·
1 Parent(s): 8a8d74c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -25
app.py CHANGED
@@ -29,40 +29,41 @@ def predict_label(text):
29
 
30
  if __name__ == '__main__':
31
 
32
- space_key = os.environ.get('key')
33
- filenames = ['network.py', 'layers.py', 'utils.py',
34
- 'representation.py', 'predict.py', 'validate.py']
35
 
36
- for file in filenames:
37
- hf_hub_download('nehalelkaref/stagedNER',
38
- filename=file,
39
- local_dir='src',
40
- token=space_key)
41
 
42
- CATALOGUE.download_package("all",
43
- recursive=True,
44
- force=True,
45
- print_status=True)
46
 
47
- from src.predict import extract_spannet_scores,extract_ent_scores,pool_span_scores,pool_ent_scores
48
- from src.network import SpanNet, EntNet
49
- from src.validate import entities_from_token_classes
50
 
51
 
52
- diasmbig = BERTUnfactoredDisambiguator.pretrained('msa')
53
- tagger = DefaultTagger(diasmbig, 'pos')
54
 
55
- span_path = 'models/span.model'
56
- msa_span_path = 'new_models/msa.best.model'
57
- entity_path= 'models/entity.msa.model'
58
 
59
- span_model = SpanNet.load_model(span_path)
60
- msa_span_model = SpanNet.load_model(msa_span_path)
61
- entity_model = EntNet.load_model(entity_path)
62
  # iface= gr.Base(primary_hue="green")
 
63
  example = gr.Examples(
64
- ["النشرة الإخبارية الصادرة عن الأونروا رقم 113 (1986/1/8).",
65
- inputs= gr.Textbox(label="Input Example", lines=1)])
66
  iface = gr.Interface(fn=predict_label, inputs="text", outputs="text",
67
  examples=example,theme="finlaymacklon/smooth_slate")
68
  iface.launch(show_api=False)
 
29
 
30
  if __name__ == '__main__':
31
 
32
+ # space_key = os.environ.get('key')
33
+ # filenames = ['network.py', 'layers.py', 'utils.py',
34
+ # 'representation.py', 'predict.py', 'validate.py']
35
 
36
+ # for file in filenames:
37
+ # hf_hub_download('nehalelkaref/stagedNER',
38
+ # filename=file,
39
+ # local_dir='src',
40
+ # token=space_key)
41
 
42
+ # CATALOGUE.download_package("all",
43
+ # recursive=True,
44
+ # force=True,
45
+ # print_status=True)
46
 
47
+ # from src.predict import extract_spannet_scores,extract_ent_scores,pool_span_scores,pool_ent_scores
48
+ # from src.network import SpanNet, EntNet
49
+ # from src.validate import entities_from_token_classes
50
 
51
 
52
+ # diasmbig = BERTUnfactoredDisambiguator.pretrained('msa')
53
+ # tagger = DefaultTagger(diasmbig, 'pos')
54
 
55
+ # span_path = 'models/span.model'
56
+ # msa_span_path = 'new_models/msa.best.model'
57
+ # entity_path= 'models/entity.msa.model'
58
 
59
+ # span_model = SpanNet.load_model(span_path)
60
+ # msa_span_model = SpanNet.load_model(msa_span_path)
61
+ # entity_model = EntNet.load_model(entity_path)
62
  # iface= gr.Base(primary_hue="green")
63
+ comp = gr.Textbox(label="Input Example", lines=1)
64
  example = gr.Examples(
65
+ examples=[["النشرة الإخبارية الصادرة عن الأونروا رقم 113 (1986/1/8)."]],
66
+ inputs= comp)
67
  iface = gr.Interface(fn=predict_label, inputs="text", outputs="text",
68
  examples=example,theme="finlaymacklon/smooth_slate")
69
  iface.launch(show_api=False)