Spaces:
Build error
Build error
Commit
·
6b35cc5
1
Parent(s):
62240fd
Upload 3 files
Browse files- network.py +333 -0
- utils.py +420 -0
- validate.py +168 -0
network.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn.utils.rnn import pad_sequence
|
6 |
+
from torch.nn.functional import cross_entropy, binary_cross_entropy
|
7 |
+
from tqdm.auto import tqdm
|
8 |
+
|
9 |
+
from .utils import Config, extract_spans, generate_targets
|
10 |
+
from .representation import TransformerRepresentation
|
11 |
+
from .layers import SpanEnumerationLayer
|
12 |
+
|
13 |
+
DEFAULT_DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
|
15 |
+
|
16 |
+
class SpanNet(nn.Module):
|
17 |
+
def __init__(self, **kwargs):
|
18 |
+
super(SpanNet, self).__init__()
|
19 |
+
self.config = Config()
|
20 |
+
self.config.pos = kwargs.get('pos', None) # pos
|
21 |
+
self.config.dp = kwargs.get('dp', 0.3) # dp
|
22 |
+
self.config.transformer_model_name = kwargs.get('transformer_model_name', 'bert-base-uncased')
|
23 |
+
self.config.token_pooling = kwargs.get('token_pooling', 'sum')
|
24 |
+
self.device = kwargs.get('device', DEFAULT_DEVICE)
|
25 |
+
|
26 |
+
self.config.repr_type = kwargs.get('repr_type', 'token_classification')
|
27 |
+
assert self.config.repr_type in ['token_classification',
|
28 |
+
'span_enumeration'], 'Invalid representaton type'
|
29 |
+
|
30 |
+
|
31 |
+
self.transformer = TransformerRepresentation(
|
32 |
+
model_name=self.config.transformer_model_name,
|
33 |
+
device=self.device).to(self.device)
|
34 |
+
|
35 |
+
self.transformer_dim = self.transformer.embedding_dim
|
36 |
+
if self.config.pos:
|
37 |
+
self.transformer.add_special_tokens([f'[{p}]' for p in self.config.pos])
|
38 |
+
|
39 |
+
self.span_tags = ['B', 'I', 'O'] # , '-']
|
40 |
+
|
41 |
+
self.enumeration_layer = SpanEnumerationLayer()
|
42 |
+
output_size = {'token_classification': len(self.span_tags),
|
43 |
+
'span_enumeration': 1}
|
44 |
+
self.span_output_layer = nn.Sequential(
|
45 |
+
nn.Linear(self.transformer_dim, self.transformer_dim),
|
46 |
+
nn.ReLU(), nn.Dropout(p=self.config.dp),
|
47 |
+
nn.Linear(self.transformer_dim, output_size[self.config.repr_type]))
|
48 |
+
def to_dict(self):
|
49 |
+
return {
|
50 |
+
'model_config': self.config.__dict__,
|
51 |
+
'model_state_dict': self.state_dict()
|
52 |
+
}
|
53 |
+
|
54 |
+
@classmethod
|
55 |
+
def load_model(cls, model_path, device=DEFAULT_DEVICE):
|
56 |
+
res = torch.load(model_path, device)
|
57 |
+
model = cls(**res['model_config'])
|
58 |
+
model.load_state_dict(res['model_state_dict'])
|
59 |
+
model.eval()
|
60 |
+
return model
|
61 |
+
|
62 |
+
@classmethod
|
63 |
+
def preds_to_sequences(self, predictions, enumerations, length):
|
64 |
+
# assumes the function is applied per tensor/sample
|
65 |
+
# sort descendindly
|
66 |
+
enum_preds = {predictions[idx].item(): enumerations[idx] for idx in range(len(enumerations))}
|
67 |
+
sorted_enum_preds = dict(sorted(enum_preds.items(), key=lambda val:val[1], reverse=True))
|
68 |
+
|
69 |
+
# look for clashes
|
70 |
+
spans = [sorted_enum_preds[key] for key in sorted_enum_preds.keys()]
|
71 |
+
spans_copy = [sorted_enum_preds[key] for key in sorted_enum_preds.keys()]
|
72 |
+
|
73 |
+
i=0
|
74 |
+
while(i!=(len(spans_copy))):
|
75 |
+
filtered_spans = []
|
76 |
+
s,e = spans_copy[i]
|
77 |
+
for j in range(i+1, len(spans_copy)):
|
78 |
+
sj,ej = spans_copy[j]
|
79 |
+
if((sj<s<=ej<e) or (sj<s<=ej<=e) or ((s<sj)&(e<ej))):
|
80 |
+
filtered_spans.append(spans_copy[j])
|
81 |
+
i+=1
|
82 |
+
spans_copy = [span for span in spans_copy if span not in filtered_spans]
|
83 |
+
|
84 |
+
chosen_indices = [spans.index(span) for span in spans_copy]
|
85 |
+
filtered_enum_preds = {list(sorted_enum_preds.keys())[idx]:
|
86 |
+
sorted_enum_preds[list(sorted_enum_preds.keys())[idx]]
|
87 |
+
for idx in chosen_indices}
|
88 |
+
# assign BIO to spans
|
89 |
+
tagged_seq = ['O']*length
|
90 |
+
for idx in range(len(spans_copy)):
|
91 |
+
s,e =spans_copy[idx]
|
92 |
+
|
93 |
+
tagged_seq[s]='B'
|
94 |
+
|
95 |
+
if((e-s)>0):
|
96 |
+
bounds = (e+1)-(s+1)
|
97 |
+
tagged_seq[s+1:e+1] =['I'] * bounds
|
98 |
+
|
99 |
+
return tagged_seq
|
100 |
+
|
101 |
+
def save_model(self, output_path):
|
102 |
+
torch.save(self.to_dict(), output_path)
|
103 |
+
|
104 |
+
def _extract_sentence_vectors(self, sentences, pos=None):
|
105 |
+
if pos and self.config.pos:
|
106 |
+
sentences = [[f'[{p}] {s}' for s, p in zip(s, p)]
|
107 |
+
for s, p in zip(sentences, pos)]
|
108 |
+
outs = self.transformer(sentences, is_pretokenized=True,
|
109 |
+
token_pooling=self.config.token_pooling)
|
110 |
+
return outs.pooled_tokens
|
111 |
+
|
112 |
+
def forward(self, sentences, pos=None, tags=None, **kwargs):
|
113 |
+
out_dict = {}
|
114 |
+
embs = self._extract_sentence_vectors(sentences, pos)
|
115 |
+
if kwargs.get('output_word_vecs', False):
|
116 |
+
out_dict['word_vecs'] = embeddings
|
117 |
+
|
118 |
+
lens = [len(s) for s in embs]
|
119 |
+
|
120 |
+
if self.config.repr_type == 'span_enumeration':
|
121 |
+
embs, enumerations = self.enumeration_layer(embs, lens)
|
122 |
+
lens = [len(e) for e in enumerations]
|
123 |
+
|
124 |
+
input_layer = pad_sequence(embs, batch_first=True)
|
125 |
+
|
126 |
+
span_scores = [torch.unbind(f)[:l]
|
127 |
+
for f, l in zip(self.span_output_layer(input_layer), lens)]
|
128 |
+
|
129 |
+
|
130 |
+
if kwargs.get('output_span_scores', False):
|
131 |
+
out_dict['span_scores'] = span_scores
|
132 |
+
if self.config.repr_type == "token_classification":
|
133 |
+
pred_span_ids = [[torch.argmax(s) for s in sc] for sc in span_scores]
|
134 |
+
pred_span_tags = [[self.span_tags[idx] for idx in sequence]
|
135 |
+
for sequence in pred_span_ids]
|
136 |
+
out_dict['pred_tags'] = pred_span_tags
|
137 |
+
else:
|
138 |
+
lens = [len(s) for s in sentences]
|
139 |
+
tagged_seq=[]
|
140 |
+
prev_enum = 0
|
141 |
+
for idx in range(0, len(enumerations)):
|
142 |
+
enum = enumerations[idx]
|
143 |
+
length =lens[idx]
|
144 |
+
|
145 |
+
scores = flat_scores[prev_enum :len(enum)+ prev_enum]
|
146 |
+
|
147 |
+
prev_enum = len(enum)
|
148 |
+
tagged_seq.append(self.preds_to_sequences(scores, enum, length))
|
149 |
+
out_dict['pred_tags'] = tagged_seq
|
150 |
+
|
151 |
+
|
152 |
+
if tags is None:
|
153 |
+
return out_dict
|
154 |
+
|
155 |
+
if self.config.repr_type == 'span_enumeration':
|
156 |
+
targets = generate_targets(enumerations, tags)
|
157 |
+
targets = torch.Tensor([t for st in targets for t in st])
|
158 |
+
flat_scores = torch.Tensor([t for score in span_scores for t in score])
|
159 |
+
print('before: ', flat_scores.shape)
|
160 |
+
if self.config.repr_type == 'token_classification':
|
161 |
+
# limit the targets of each sentence to the words not truncated during tokenization
|
162 |
+
targets = torch.cat(
|
163 |
+
[torch.tensor([self.span_tags.index(t[0]) for t, _ in zip(tg, sc)])
|
164 |
+
for tg, sc in zip(tags, span_scores)]).to(self.device)
|
165 |
+
flat_scores = torch.stack([s for tg, sc in zip(tags, span_scores) for _, s in zip(tg, sc)])
|
166 |
+
|
167 |
+
|
168 |
+
if self.config.repr_type == 'span_enumeration':
|
169 |
+
span_loss = binary_cross_entropy(flat_scores.sigmoid(), targets)
|
170 |
+
|
171 |
+
else:
|
172 |
+
span_loss = cross_entropy(flat_scores, targets)
|
173 |
+
out_dict['loss'] = span_loss
|
174 |
+
return out_dict
|
175 |
+
|
176 |
+
def from_span_scores(self, span_scores):
|
177 |
+
pred_span_ids = [[torch.argmax(s) for s in sc] for sc in span_scores]
|
178 |
+
return [[self.span_tags[idx] for idx in sequence]
|
179 |
+
for sequence in pred_span_ids]
|
180 |
+
|
181 |
+
|
182 |
+
class EntNet(nn.Module):
|
183 |
+
def __init__(self, **kwargs):
|
184 |
+
super(EntNet, self).__init__()
|
185 |
+
self.config = Config()
|
186 |
+
self.span_net = kwargs.get('span_net')
|
187 |
+
self.config.tune_span_net = kwargs.get('tune_span_net', False)
|
188 |
+
self.config.use_span_emb = kwargs.get('use_span_emb', False)
|
189 |
+
self.config.use_ent_markers = kwargs.get('use_ent_markers', False)
|
190 |
+
# it is possible to tune span_net without using its embeddings
|
191 |
+
if self.span_net and not self.config.tune_span_net:
|
192 |
+
for p in self.span_net.parameters():
|
193 |
+
p.requires_grad = False
|
194 |
+
self.config.ent_tags = self.ent_tags = kwargs.get('ent_tags')
|
195 |
+
self.config.pos = kwargs.get('pos', None)
|
196 |
+
self.config.dp = kwargs.get('dp', 0.3)
|
197 |
+
self.config.transformer_model_name = kwargs.get('transformer_model_name', 'bert-base-uncased')
|
198 |
+
self.config.token_pooling = kwargs.get('token_pooling', 'first')
|
199 |
+
self.device = kwargs.get('device', DEFAULT_DEVICE)
|
200 |
+
|
201 |
+
self.transformer = TransformerRepresentation(
|
202 |
+
model_name=self.config.transformer_model_name,
|
203 |
+
device=self.device).to(self.device)
|
204 |
+
self.transformer_dim = self.transformer.embedding_dim
|
205 |
+
|
206 |
+
self.transformer.add_special_tokens(['[ENT]', '[/ENT]'])
|
207 |
+
self.transformer.add_special_tokens(['[INFO]', '[/INFO]'])
|
208 |
+
if self.config.pos:
|
209 |
+
self.transformer.add_special_tokens(
|
210 |
+
['['+p+']' for p in self.config.pos])
|
211 |
+
|
212 |
+
self.ent_output_layer = nn.Sequential(
|
213 |
+
nn.Linear(2*self.transformer_dim, 2*self.transformer_dim),
|
214 |
+
nn.ReLU(), nn.Dropout(p=self.config.dp),
|
215 |
+
nn.Linear(2*self.transformer_dim, len(self.config.ent_tags)))
|
216 |
+
|
217 |
+
def to_dict(self):
|
218 |
+
return {
|
219 |
+
'model_config': self.config.__dict__,
|
220 |
+
'span_net_config': self.span_net.config.__dict__ if self.span_net is not None else None,
|
221 |
+
'model_state_dict': self.state_dict()
|
222 |
+
}
|
223 |
+
|
224 |
+
@classmethod
|
225 |
+
def load_model(cls, model_path, device=DEFAULT_DEVICE):
|
226 |
+
res = torch.load(model_path, device)
|
227 |
+
span_net = SpanNet(**res['span_net_config']) if res['span_net_config'] is not None else None
|
228 |
+
model = cls(span_net=span_net, **res['model_config'])
|
229 |
+
model.load_state_dict(res['model_state_dict'])
|
230 |
+
model.eval()
|
231 |
+
return model
|
232 |
+
|
233 |
+
def save_model(self, output_path):
|
234 |
+
torch.save(self.to_dict(), output_path)
|
235 |
+
|
236 |
+
def _extract_sentence_vectors(self, sentences, pos=None, ent_bounds=None):
|
237 |
+
if pos and self.config.pos:
|
238 |
+
sentences = [[f'[{p}] {s}' for s, p in zip(s, p)]
|
239 |
+
for s, p in zip(sentences, pos)]
|
240 |
+
if ent_bounds and self.config.use_ent_markers:
|
241 |
+
for sent, sent_ents in zip(sentences, ent_bounds):
|
242 |
+
for ent in sent_ents:
|
243 |
+
sent[ent[0]] = f'[ENT] {sent[ent[0]]}'
|
244 |
+
sent[ent[1]] = f'{sent[ent[1]]} [/ENT]'
|
245 |
+
|
246 |
+
outs = self.transformer(sentences, is_pretokenized=True,
|
247 |
+
token_pooling=self.config.token_pooling)
|
248 |
+
return outs.pooled_tokens
|
249 |
+
|
250 |
+
def forward(self, sentences, pos=None, tags=None, **kwargs):
|
251 |
+
out_dict = {}
|
252 |
+
pred_span_seqs = kwargs.get('pred_tags', None)
|
253 |
+
if pred_span_seqs is None:
|
254 |
+
span_out = self.span_net(sentences, pos=pos,
|
255 |
+
output_word_vecs=self.config.use_span_emb,
|
256 |
+
tags=tags if self.config.tune_span_net else None)
|
257 |
+
pred_span_seqs = span_out['pred_tags']
|
258 |
+
bounds = [[e[1] for e in extract_spans(t, tagless=True)[3]]
|
259 |
+
for t in pred_span_seqs]
|
260 |
+
if tags is not None:
|
261 |
+
gold_spans = [[e for e in extract_spans(t, tagless=True)[3]]
|
262 |
+
for t in tags]
|
263 |
+
matches = [[[g[0]
|
264 |
+
for g in golds if p[0] == g[1][0] and p[1] == g[1][1]]
|
265 |
+
for p in preds]
|
266 |
+
for preds, golds in zip(bounds, gold_spans)]
|
267 |
+
targets = [[span_matches[0] if len(span_matches) == 1 else 'O'
|
268 |
+
for span_matches in sent_matches]
|
269 |
+
for sent_matches in matches]
|
270 |
+
|
271 |
+
sentences = [sent + [t for bd in sent_bounds
|
272 |
+
for t in [self.transformer.tokenizer.sep_token] + sent[bd[0]:bd[1] + 1]]
|
273 |
+
+ [self.transformer.tokenizer.sep_token]
|
274 |
+
for sent, sent_bounds in zip(sentences, bounds)]
|
275 |
+
sep_ids = [[i for i, s in enumerate(sent) if s == self.transformer.tokenizer.sep_token]
|
276 |
+
for sent in sentences]
|
277 |
+
embs = self._extract_sentence_vectors(sentences, pos, bounds)
|
278 |
+
if kwargs.get('output_word_vecs', False):
|
279 |
+
out_dict['word_vecs'] = embs
|
280 |
+
|
281 |
+
span_vecs = [
|
282 |
+
torch.stack([torch.cat((torch.sum(e[b[0]:b[1] + 1], dim=0),
|
283 |
+
torch.sum(e[spi[i]:spi[i+1]+1], dim=0))) for i, b in enumerate(bd)])
|
284 |
+
if bd else torch.zeros((0)).to(self.device)
|
285 |
+
for e, bd, spi in zip(embs, bounds, sep_ids)]
|
286 |
+
ent_scores = [self.ent_output_layer(sv) if len(sv) else sv
|
287 |
+
for sv in span_vecs]
|
288 |
+
if kwargs.get('output_ent_scores', False):
|
289 |
+
out_dict['ent_scores'] = ent_scores
|
290 |
+
out_dict['bounds'] = bounds
|
291 |
+
if tags is None:
|
292 |
+
max_tags = [[self.ent_tags[torch.argmax(e)] for e in es]
|
293 |
+
for es in ent_scores]
|
294 |
+
# reconstruct sequences
|
295 |
+
sent_lens = [len(s) for s in sentences]
|
296 |
+
combined_sequences = []
|
297 |
+
for mt, bnd, lens in zip(max_tags, bounds, sent_lens):
|
298 |
+
x = ['O' for _ in range(lens)]
|
299 |
+
for t, b in zip(mt, bnd):
|
300 |
+
x[b[0]] = 'O' if t == 'O' else f'B-{t}'
|
301 |
+
for i in range(b[0] + 1, b[1] + 1):
|
302 |
+
x[i] = 'O' if t == 'O' else f'I-{t}'
|
303 |
+
combined_sequences.append(x)
|
304 |
+
out_dict['pred_tags'] = combined_sequences
|
305 |
+
return out_dict
|
306 |
+
|
307 |
+
ent_targs = torch.tensor([self.ent_tags.index(t)
|
308 |
+
for targ in targets for t in targ],
|
309 |
+
dtype=torch.long).to(self.device)
|
310 |
+
ent_preds = torch.cat(ent_scores)
|
311 |
+
if not len(ent_preds):
|
312 |
+
out_dict['loss'] = None
|
313 |
+
return out_dict
|
314 |
+
ent_loss = cross_entropy(ent_preds, ent_targs)
|
315 |
+
out_dict['loss'] = ent_loss
|
316 |
+
if self.config.tune_span_net:
|
317 |
+
out_dict['loss'] += span_out['loss']
|
318 |
+
return out_dict
|
319 |
+
|
320 |
+
def from_ent_scores(self, ent_scores, sentences, bounds):
|
321 |
+
max_tags = [[self.ent_tags[torch.argmax(e)] for e in es]
|
322 |
+
for es in ent_scores]
|
323 |
+
# reconstruct sequences
|
324 |
+
sent_lens = [len(s) for s in sentences]
|
325 |
+
combined_sequences = []
|
326 |
+
for mt, bnd, lens in zip(max_tags, bounds, sent_lens):
|
327 |
+
x = ['O' for _ in range(lens)]
|
328 |
+
for t, b in zip(mt, bnd):
|
329 |
+
x[b[0]] = 'O' if t == 'O' else f'B-{t}'
|
330 |
+
for i in range(b[0] + 1, b[1] + 1):
|
331 |
+
x[i] = 'O' if t == 'O' else f'I-{t}'
|
332 |
+
combined_sequences.append(x)
|
333 |
+
return combined_sequences
|
utils.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import pyarabic.araby as araby
|
3 |
+
# import stanza
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
class Config:
|
7 |
+
def __init__(self):
|
8 |
+
super(Config, self).__init__()
|
9 |
+
|
10 |
+
|
11 |
+
def read_conll_ner(path):
|
12 |
+
with open(path) as f:
|
13 |
+
lines = f.readlines()
|
14 |
+
unique_entries = []
|
15 |
+
sentences = []
|
16 |
+
curr_sentence = []
|
17 |
+
for line in lines:
|
18 |
+
if not line.strip():
|
19 |
+
if curr_sentence:
|
20 |
+
sentences.append(curr_sentence)
|
21 |
+
curr_sentence = []
|
22 |
+
continue
|
23 |
+
if line.startswith('#') and not curr_sentence:
|
24 |
+
continue
|
25 |
+
entry = line.split()
|
26 |
+
curr_sentence.append(entry)
|
27 |
+
if not len(unique_entries):
|
28 |
+
unique_entries = [[] for _ in entry[1:]]
|
29 |
+
for e, list in zip(entry[1:], unique_entries):
|
30 |
+
if e not in list:
|
31 |
+
list.append(e)
|
32 |
+
return [sentences] + unique_entries
|
33 |
+
|
34 |
+
|
35 |
+
def read_pickled_conll(path):
|
36 |
+
with open(path, "rb") as f:
|
37 |
+
data = pickle.load(f)
|
38 |
+
return data
|
39 |
+
|
40 |
+
|
41 |
+
def split_conll_docs(conll_sents, skip_docstart=True):
|
42 |
+
docs = []
|
43 |
+
curr_doc = []
|
44 |
+
for sent in conll_sents:
|
45 |
+
if sent[0][0] == '-DOCSTART-':
|
46 |
+
if curr_doc:
|
47 |
+
docs.append(curr_doc)
|
48 |
+
curr_doc = []
|
49 |
+
if skip_docstart:
|
50 |
+
continue
|
51 |
+
curr_doc.append(sent)
|
52 |
+
docs.append(curr_doc)
|
53 |
+
return docs
|
54 |
+
|
55 |
+
|
56 |
+
def create_context_data(docs, pos_col_id=1, tag_col_id=3, context_length=1, **kwargs):
|
57 |
+
ctx_type = kwargs.get("ctx_type", "other")
|
58 |
+
sep_token = kwargs.get("sep_token", "[SEP]")
|
59 |
+
if ctx_type == "cand_titles":
|
60 |
+
# create context for candidate titles scenario
|
61 |
+
for doc in docs:
|
62 |
+
doc["ctx_sent"] = doc["query"] + [sep_token] + f"<split>{sep_token}<split>".join([cand["doc_title"] for cand in doc["BM25_cands"]]).split("<split>")
|
63 |
+
return docs
|
64 |
+
if ctx_type == "cand_links":
|
65 |
+
for doc in docs:
|
66 |
+
doc_titles_list = f"<split>{sep_token}<split>".join([cand["doc_title"] for cand in doc["BM25_cands"]]).split("<split>")
|
67 |
+
linked_titles_list = f"<split>{sep_token}<split>".join([linked for cand in doc["BM25_cands"] for linked in cand["linked_titles"]]).split("<split>")
|
68 |
+
doc["ctx_sent"] = doc["query"] + [sep_token] + doc_titles_list + [sep_token] + linked_titles_list
|
69 |
+
return docs
|
70 |
+
if ctx_type == "raw_text":
|
71 |
+
# create context for candidate raw text
|
72 |
+
for doc in docs:
|
73 |
+
doc["ctx_sent"] = [doc["query"] + [sep_token] + [cand["processed_text"]] for cand in doc["BM25_cands"]]
|
74 |
+
return docs
|
75 |
+
if ctx_type == 'matched_spans':
|
76 |
+
matched_spans = kwargs.get('matched_spans')
|
77 |
+
return [
|
78 |
+
[[t[0] for t in d] + [t for ms in ms for t in [sep_token] + ms[1]], # sentence tokens + spans
|
79 |
+
None, # pos tags
|
80 |
+
[s[tag_col_id] for s in d] if tag_col_id > 0 else None, # ner tags
|
81 |
+
[len(d)] # sentence length
|
82 |
+
]
|
83 |
+
for d, ms in zip(docs, matched_spans)]
|
84 |
+
if ctx_type == 'bm25_matched_spans':
|
85 |
+
matched_spans = kwargs.get('matched_spans')
|
86 |
+
pickled_data = kwargs.get('pickled_data')
|
87 |
+
docs = [[[t[0] for t in d] + [t for ms in ms for t in [sep_token] + ms[1]], # sentence tokens + spans
|
88 |
+
None, # pos tags
|
89 |
+
[s[tag_col_id] for s in d], # ner tags
|
90 |
+
[len(d)] # sentence length
|
91 |
+
]
|
92 |
+
for d, ms in zip(docs, matched_spans)]
|
93 |
+
for ms, doc in zip(docs,pickled_data):
|
94 |
+
doc_titles_list = f"<split>{sep_token}<split>".join([cand["doc_title"] for cand in doc["BM25_cands"]]).split("<split>")
|
95 |
+
linked_titles_list = f"<split>{sep_token}<split>".join([linked for cand in doc["BM25_cands"] for linked in cand["linked_titles"]]).split("<split>")
|
96 |
+
ms[0] = ms[0] + [sep_token] + doc_titles_list + [sep_token] + linked_titles_list
|
97 |
+
return docs
|
98 |
+
if ctx_type == "infobox":
|
99 |
+
infobox_keys_path = kwargs.get("infobox_keys_path")
|
100 |
+
infobox_keys = read_pickled_conll(infobox_keys_path)
|
101 |
+
if 'pred_spans' in docs[0]:
|
102 |
+
docs = get_pred_ent_bounds(docs)
|
103 |
+
for doc in docs:
|
104 |
+
if 'pred_spans' in doc:
|
105 |
+
ents = [' '.join(doc['query'][bd[0]:bd[1] + 1]) for bd in doc['pred_ent_bounds']]
|
106 |
+
ents_wo_space = [''.join(doc['query'][bd[0]:bd[1] + 1]) for bd in doc['pred_ent_bounds']]
|
107 |
+
else:
|
108 |
+
ents = [' '.join(doc['query'][bd[0]:bd[1] + 1]) for bd in doc['ent_bounds']]
|
109 |
+
ents_wo_space = [''.join(doc['query'][bd[0]:bd[1] + 1]) for bd in doc['ent_bounds']]
|
110 |
+
ents = list(set(ents + ents_wo_space))
|
111 |
+
infobox = [infobox_keys[en] for en in ents if en in infobox_keys and infobox_keys[en]]
|
112 |
+
for ibs in infobox:
|
113 |
+
ibs[0] = '[INFO] ' + ibs[0]
|
114 |
+
ibs[-1] = ibs[-1] + ' [/INFO]'
|
115 |
+
infobox = [i for j in infobox for i in j]
|
116 |
+
doc["ctx_sent"] = doc["query"] + [sep_token] + infobox
|
117 |
+
return docs
|
118 |
+
# create context type for other scenarios
|
119 |
+
res = []
|
120 |
+
for doc in docs:
|
121 |
+
ctx_len = context_length if context_length > 0 else len(doc)
|
122 |
+
# for the last sentences loop around to the beginning for context
|
123 |
+
padded_doc = doc + doc[:ctx_len]
|
124 |
+
for i in range(len(doc)):
|
125 |
+
res.append((
|
126 |
+
[s[0] for sent in padded_doc[i:i+ctx_len] for s in sent],
|
127 |
+
[s[pos_col_id] for sent in padded_doc[i:i+ctx_len] for s in sent] if pos_col_id > 0 else None,
|
128 |
+
[s[tag_col_id] for sent in padded_doc[i:i+ctx_len] for s in sent],
|
129 |
+
[len(sent) for sent in padded_doc[i:i+ctx_len]],
|
130 |
+
{} # dictionary for extra context
|
131 |
+
))
|
132 |
+
return res
|
133 |
+
|
134 |
+
|
135 |
+
def calc_correct(sentence):
|
136 |
+
gold_chunks = []
|
137 |
+
parallel_chunks = []
|
138 |
+
pred_chunks = []
|
139 |
+
curr_gold_chunk = []
|
140 |
+
curr_parallel_chunk = []
|
141 |
+
curr_pred_chunk = []
|
142 |
+
prev_tag = None
|
143 |
+
for line in sentence:
|
144 |
+
_, _, _, gt, pt = line
|
145 |
+
curr_tag = None
|
146 |
+
if '-' in pt:
|
147 |
+
curr_tag = pt.split('-')[1]
|
148 |
+
if gt.startswith('B'):
|
149 |
+
if curr_gold_chunk:
|
150 |
+
gold_chunks.append(curr_gold_chunk)
|
151 |
+
parallel_chunks.append(curr_parallel_chunk)
|
152 |
+
curr_gold_chunk = [gt]
|
153 |
+
curr_parallel_chunk = [pt]
|
154 |
+
elif gt.startswith('I') or (pt.startswith('I') and curr_tag == prev_tag
|
155 |
+
and curr_gold_chunk):
|
156 |
+
curr_gold_chunk.append(gt)
|
157 |
+
curr_parallel_chunk.append(pt)
|
158 |
+
elif gt.startswith('O') and pt.startswith('O'):
|
159 |
+
if curr_gold_chunk:
|
160 |
+
gold_chunks.append(curr_gold_chunk)
|
161 |
+
parallel_chunks.append(curr_parallel_chunk)
|
162 |
+
curr_gold_chunk = []
|
163 |
+
curr_parallel_chunk = []
|
164 |
+
if pt.startswith('O'):
|
165 |
+
if curr_pred_chunk:
|
166 |
+
pred_chunks.append(curr_pred_chunk)
|
167 |
+
curr_pred_chunk = []
|
168 |
+
elif pt.startswith('B'):
|
169 |
+
if curr_pred_chunk:
|
170 |
+
pred_chunks.append(curr_pred_chunk)
|
171 |
+
curr_pred_chunk = [pt]
|
172 |
+
prev_tag = curr_tag
|
173 |
+
else:
|
174 |
+
if prev_tag is not None and curr_tag != prev_tag:
|
175 |
+
prev_tag = curr_tag
|
176 |
+
if curr_pred_chunk:
|
177 |
+
pred_chunks.append(curr_pred_chunk)
|
178 |
+
curr_pred_chunk = []
|
179 |
+
curr_pred_chunk.append(pt)
|
180 |
+
|
181 |
+
if curr_gold_chunk:
|
182 |
+
gold_chunks.append(curr_gold_chunk)
|
183 |
+
parallel_chunks.append(curr_parallel_chunk)
|
184 |
+
if curr_pred_chunk:
|
185 |
+
pred_chunks.append(curr_pred_chunk)
|
186 |
+
correct = sum([1 for gc, pc in zip(gold_chunks, parallel_chunks)
|
187 |
+
if not len([1 for g, p in zip(gc, pc) if g != p])])
|
188 |
+
correct_tagless = sum([1 for gc, pc in zip(gold_chunks, parallel_chunks)
|
189 |
+
if not len([1 for g, p in zip(gc, pc) if g[0] != p[0]])])
|
190 |
+
# return correct, gold_chunks, parallel_chunks, pred_chunks, ob1_correct, correct_tagless
|
191 |
+
return {'correct': correct,
|
192 |
+
'correct_tagless': correct_tagless,
|
193 |
+
'gold_count': len(gold_chunks),
|
194 |
+
'pred_count': len(pred_chunks)}
|
195 |
+
|
196 |
+
|
197 |
+
def tag_sentences(sentences):
|
198 |
+
nlp = stanza.Pipeline(lang='en', processors='tokenize,pos', logging_level='WARNING')
|
199 |
+
tagged_sents = []
|
200 |
+
for sentence in sentences:
|
201 |
+
n = nlp(sentence)
|
202 |
+
tagged_sent = []
|
203 |
+
for s in n.sentences:
|
204 |
+
for w in s.words:
|
205 |
+
tagged_sent.append([w.text, w.upos])
|
206 |
+
tagged_sents.append(tagged_sent)
|
207 |
+
return tagged_sents
|
208 |
+
|
209 |
+
|
210 |
+
def extract_spans(sentence, tagless=False):
|
211 |
+
spans_positions = []
|
212 |
+
span_bounds = []
|
213 |
+
all_bounds = []
|
214 |
+
span_tags = []
|
215 |
+
curr_tag = None
|
216 |
+
curr_span = []
|
217 |
+
curr_span_start = -1
|
218 |
+
# span ids, span types
|
219 |
+
for i, token in enumerate(sentence):
|
220 |
+
if token.startswith('B'):
|
221 |
+
if curr_span:
|
222 |
+
spans_positions.append([curr_span, len(all_bounds)])
|
223 |
+
span_bounds.append([curr_span_start, i-1])
|
224 |
+
all_bounds.append([[curr_span_start, i - 1], 'E', len(all_bounds)])
|
225 |
+
if not tagless:
|
226 |
+
span_tags.append(token.split('-')[1])
|
227 |
+
curr_span = []
|
228 |
+
curr_tag = None
|
229 |
+
curr_span.append(token)
|
230 |
+
curr_tag = None if tagless else token.split('-')[1]
|
231 |
+
curr_span_start = i
|
232 |
+
elif token.startswith('I'):
|
233 |
+
if not tagless:
|
234 |
+
tag = token.split('-')[1]
|
235 |
+
if tag != curr_tag and curr_tag is not None:
|
236 |
+
spans_positions.append([curr_span, len(all_bounds)])
|
237 |
+
span_bounds.append([curr_span_start, i - 1])
|
238 |
+
span_tags.append(token.split('-')[1])
|
239 |
+
all_bounds.append([[curr_span_start, i - 1], 'E', len(all_bounds)])
|
240 |
+
curr_span = []
|
241 |
+
curr_tag = tag
|
242 |
+
curr_span_start = i
|
243 |
+
elif curr_tag is None:
|
244 |
+
curr_span = []
|
245 |
+
curr_tag = tag
|
246 |
+
curr_span_start = i
|
247 |
+
elif not curr_span:
|
248 |
+
curr_span_start = i
|
249 |
+
curr_span.append(token)
|
250 |
+
elif token.startswith('O') or token.startswith('-'):
|
251 |
+
if curr_span:
|
252 |
+
spans_positions.append([curr_span, len(all_bounds)])
|
253 |
+
span_bounds.append([curr_span_start, i-1])
|
254 |
+
all_bounds.append([[curr_span_start, i-1], 'E', len(all_bounds)])
|
255 |
+
curr_span = []
|
256 |
+
curr_tag = None
|
257 |
+
all_bounds.append([[i], 'W', len(all_bounds)])
|
258 |
+
# check if sentence ended with a span
|
259 |
+
if curr_span:
|
260 |
+
spans_positions.append([curr_span, len(all_bounds)])
|
261 |
+
span_bounds.append([curr_span_start, len(sentence) - 1])
|
262 |
+
all_bounds.append([[curr_span_start, len(sentence) - 1], 'E', len(all_bounds)])
|
263 |
+
tagged_bounds = [[loc[0][0].split('-')[1] if '-' in loc[0][0] else loc[0][0], bound]
|
264 |
+
for loc, bound in zip(spans_positions, span_bounds)]
|
265 |
+
return spans_positions, span_bounds, all_bounds, tagged_bounds
|
266 |
+
|
267 |
+
|
268 |
+
def ner_corpus_stats(corpus_path):
|
269 |
+
onto_train_cols = read_conll_ner(corpus_path)
|
270 |
+
tags = list(set([t.split('-')[1] for t in onto_train_cols[3] if '-' in t]))
|
271 |
+
onto_train_spans = [extract_spans([t[3] for t in sent])[3] for sent in
|
272 |
+
onto_train_cols[0]]
|
273 |
+
span_lens = [span[1][1] - span[1][0] + 1 for sent in onto_train_spans for
|
274 |
+
span in sent]
|
275 |
+
|
276 |
+
len_stats = [span_lens.count(i + 1) / len(span_lens) for i in
|
277 |
+
range(max(span_lens))]
|
278 |
+
flat_spans = [span for sent in onto_train_spans for span in sent]
|
279 |
+
|
280 |
+
tag_lens_dict = {k: [] for k in tags}
|
281 |
+
tag_counts_dict = {k: 0 for k in tags}
|
282 |
+
for span in flat_spans:
|
283 |
+
span_length = span[1][1] - span[1][0] + 1
|
284 |
+
span_tag = span[0][0].split('-')[1]
|
285 |
+
tag_lens_dict[span_tag].append(span_length)
|
286 |
+
tag_counts_dict[span_tag] += 1
|
287 |
+
|
288 |
+
x = list(tag_counts_dict.items())
|
289 |
+
x.sort(key=lambda l: l[1])
|
290 |
+
tag_counts = [list(l) for l in x]
|
291 |
+
for l in tag_counts:
|
292 |
+
l[1] = l[1] / len(span_lens)
|
293 |
+
|
294 |
+
tag_len_stats = {k: [v.count(i + 1) / len(v) for i in range(max(v))]
|
295 |
+
for k, v in tag_lens_dict.items()}
|
296 |
+
span_texts = [sent[span[1][0]:span[1][1] + 1]
|
297 |
+
for sent, spans in zip(onto_train_cols[0], onto_train_spans)
|
298 |
+
for span in spans]
|
299 |
+
span_pos = [[span[0][-1].split('-')[1], '_'.join(t[1] for t in span)]
|
300 |
+
for span in span_texts]
|
301 |
+
unique_pos = list(set([span[1] for span in span_pos]))
|
302 |
+
pos_dict = {k: 0 for k in unique_pos}
|
303 |
+
for span in span_pos:
|
304 |
+
pos_dict[span[1]] += 1
|
305 |
+
unique_pos.sort(key=lambda l: pos_dict[l], reverse=True)
|
306 |
+
pos_stats = [[p, pos_dict[p] / len(span_pos)] for p in unique_pos]
|
307 |
+
tag_pos_dict = {kt: {kp: 0 for kp in unique_pos} for kt in tags}
|
308 |
+
for span in span_pos:
|
309 |
+
tag_pos_dict[span[0]][span[1]] += 1
|
310 |
+
tag_pos_stats = {kt: [[p, tag_pos_dict[kt][p] / tag_counts_dict[kt]]
|
311 |
+
for p in unique_pos] for kt in tags}
|
312 |
+
for kt in tags:
|
313 |
+
tag_pos_stats[kt].sort(key=lambda l: l[1], reverse=True)
|
314 |
+
|
315 |
+
return len_stats, tag_len_stats, tag_counts, pos_stats, tag_pos_stats
|
316 |
+
|
317 |
+
|
318 |
+
def filter_by_max_ents(sentences, max_ent_length):
|
319 |
+
"""
|
320 |
+
Filters a given list of sentences and only returns the sentences that have
|
321 |
+
named entities shorter than or equal to the given max_ent_length.
|
322 |
+
|
323 |
+
:param sentences: sentences in conll format as extracted by read_conll_ner
|
324 |
+
:param max_ent_length: The maximum number of tokens in an entity
|
325 |
+
:return: a lits of sentences
|
326 |
+
"""
|
327 |
+
filtered_sents = []
|
328 |
+
for sent in sentences:
|
329 |
+
sent_span_lens = [s[1] - s[0] + 1
|
330 |
+
for s in extract_spans([t[3] for t in sent])[1]]
|
331 |
+
if not sent_span_lens or max(sent_span_lens) <= max_ent_length:
|
332 |
+
filtered_sents.append(sent)
|
333 |
+
return filtered_sents
|
334 |
+
|
335 |
+
|
336 |
+
def get_pred_ent_bounds(docs):
|
337 |
+
for doc in docs:
|
338 |
+
eb = []
|
339 |
+
count = 0
|
340 |
+
for p_eb in doc['pred_spans']:
|
341 |
+
if p_eb == 'B':
|
342 |
+
eb.append([count,count])
|
343 |
+
elif p_eb == 'I' and len(eb) > 0:
|
344 |
+
eb[-1][1] = count
|
345 |
+
count += 1
|
346 |
+
doc['pred_ent_bounds'] = eb
|
347 |
+
return docs
|
348 |
+
|
349 |
+
def enumerate_spans(batch):
|
350 |
+
|
351 |
+
enumerated_spans_batch = []
|
352 |
+
|
353 |
+
for idx in range(0, len(batch)):
|
354 |
+
sentence_length = batch[idx]
|
355 |
+
enumerated_spans = []
|
356 |
+
for x in range(len(sentence_length)):
|
357 |
+
for y in range(x, len(sentence_length)):
|
358 |
+
enumerated_spans.append([x,y])
|
359 |
+
|
360 |
+
enumerated_spans_batch.append(enumerated_spans)
|
361 |
+
|
362 |
+
return enumerated_spans_batch
|
363 |
+
|
364 |
+
def compact_span_enumeration(batch):
|
365 |
+
sentence_lengths = [len(b) for b in batch]
|
366 |
+
enumerated_spans = [[[x, y]
|
367 |
+
for y in range(0, sentence_length)
|
368 |
+
for x in range(sentence_length)]
|
369 |
+
for sentence_length in sentence_lengths]
|
370 |
+
return enumerated_spans
|
371 |
+
|
372 |
+
def preprocess_data(data):
|
373 |
+
clean_data = []
|
374 |
+
for sample in data:
|
375 |
+
clean_tokens = [araby.strip_tashkeel(token) for token in sample[0]]
|
376 |
+
clean_tokens = [araby.strip_tatweel(token) for token in clean_tokens]
|
377 |
+
clean_sample = [clean_tokens]
|
378 |
+
clean_sample.extend(sample[1:])
|
379 |
+
clean_data.append(clean_sample)
|
380 |
+
return clean_data
|
381 |
+
|
382 |
+
|
383 |
+
def generate_targets(enumerated_spans, sentences):
|
384 |
+
#### could be refactored into a helper function ####
|
385 |
+
extracted_spans= [extract_spans(sentence,True)[3] for sentence in sentences]
|
386 |
+
target_locations = []
|
387 |
+
|
388 |
+
for span in extracted_spans:
|
389 |
+
sentence_locations = []
|
390 |
+
for location in span:
|
391 |
+
sentence_locations.append(location[1])
|
392 |
+
target_locations.append(sentence_locations)
|
393 |
+
|
394 |
+
#### could be refactored into a helper function ####
|
395 |
+
|
396 |
+
|
397 |
+
targets= []
|
398 |
+
|
399 |
+
for span, location_list in zip(enumerated_spans, target_locations):
|
400 |
+
span_arr = np.zeros_like(span).tolist()
|
401 |
+
target_indices = [span.index(span_location) for
|
402 |
+
span_location in location_list]
|
403 |
+
|
404 |
+
|
405 |
+
for idx in target_indices:
|
406 |
+
span_arr[idx] =1
|
407 |
+
|
408 |
+
span_arr = [0 if x!=1 else x for x in span_arr]
|
409 |
+
targets.append(list(span_arr))
|
410 |
+
|
411 |
+
return targets
|
412 |
+
|
413 |
+
def label_tags(tags):
|
414 |
+
output_tags = []
|
415 |
+
for tag in tags:
|
416 |
+
if (tag == "O"):
|
417 |
+
output_tags.append(0)
|
418 |
+
else:
|
419 |
+
output_tags.append(1)
|
420 |
+
return output_tags
|
validate.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import re
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from tqdm.auto import tqdm
|
6 |
+
|
7 |
+
from .network import EntNet
|
8 |
+
from .utils import read_conll_ner, split_conll_docs, create_context_data, extract_spans
|
9 |
+
|
10 |
+
use_cuda = torch.cuda.is_available()
|
11 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
12 |
+
|
13 |
+
|
14 |
+
def classify(model, sents, pos, batch_size):
|
15 |
+
model.eval()
|
16 |
+
result = []
|
17 |
+
for i in tqdm(range(0, len(sents), batch_size), desc='classifying... '):
|
18 |
+
tag_seqs = model(sentences=sents[i:i + batch_size],
|
19 |
+
pos=pos[i:i + batch_size])
|
20 |
+
result.extend(tag_seqs['pred_tags'])
|
21 |
+
# f1, p, r
|
22 |
+
return [[[w, t] for w, t in zip(s, r)] for s, r in zip(sents, result)]
|
23 |
+
|
24 |
+
|
25 |
+
def entities_from_token_classes(tokens):
|
26 |
+
ENTITY_BEGIN_REGEX = r"^B" # -(\w+)"
|
27 |
+
ENTITY_MIDDLE_REGEX = r"^I" # -(\w+)"
|
28 |
+
|
29 |
+
entities = []
|
30 |
+
current_entity = None
|
31 |
+
start_index_of_current_entity = 0
|
32 |
+
end_index_of_current_entity = 0
|
33 |
+
for i, kls in enumerate(tokens):
|
34 |
+
m = re.match(ENTITY_BEGIN_REGEX, kls)
|
35 |
+
if m is not None:
|
36 |
+
if current_entity is not None:
|
37 |
+
entities.append({
|
38 |
+
"type": current_entity,
|
39 |
+
"index": [start_index_of_current_entity,
|
40 |
+
end_index_of_current_entity]
|
41 |
+
})
|
42 |
+
# start of entity
|
43 |
+
current_entity = m.string.split('-')[1] if '-' in m.string else ''
|
44 |
+
start_index_of_current_entity = i
|
45 |
+
end_index_of_current_entity = i
|
46 |
+
continue
|
47 |
+
|
48 |
+
m = re.match(ENTITY_MIDDLE_REGEX, kls)
|
49 |
+
if current_entity is not None:
|
50 |
+
if m is None:
|
51 |
+
# after the end of this entity
|
52 |
+
entities.append({
|
53 |
+
"type": current_entity,
|
54 |
+
"index": [start_index_of_current_entity,
|
55 |
+
end_index_of_current_entity]
|
56 |
+
})
|
57 |
+
current_entity = None
|
58 |
+
continue
|
59 |
+
# in the middle of this entity
|
60 |
+
end_index_of_current_entity = i
|
61 |
+
|
62 |
+
# Add any remaining entity
|
63 |
+
if current_entity is not None:
|
64 |
+
entities.append({
|
65 |
+
"type": current_entity,
|
66 |
+
"index": [start_index_of_current_entity,
|
67 |
+
end_index_of_current_entity]
|
68 |
+
})
|
69 |
+
|
70 |
+
return entities
|
71 |
+
|
72 |
+
|
73 |
+
def calc_f1(targs, preds):
|
74 |
+
stat_dict = {
|
75 |
+
'overall': {'unl_tp': 0, 'lab_tp': 0, 'targs': 0, 'preds': 0}
|
76 |
+
}
|
77 |
+
|
78 |
+
for sent_targs, sent_preds in zip(targs, preds):
|
79 |
+
stat_dict['overall']['targs'] += len(sent_targs)
|
80 |
+
stat_dict['overall']['preds'] += len(sent_preds)
|
81 |
+
|
82 |
+
for pred in sent_preds:
|
83 |
+
if pred['type'] not in stat_dict.keys():
|
84 |
+
stat_dict[pred['type']] = {'lab_tp': 0, 'targs': 0, 'preds': 0}
|
85 |
+
stat_dict[pred['type']]['preds'] += 1
|
86 |
+
|
87 |
+
for targ in sent_targs:
|
88 |
+
if targ['type'] not in stat_dict.keys():
|
89 |
+
stat_dict[targ['type']] = {'lab_tp': 0, 'targs': 0, 'preds': 0}
|
90 |
+
stat_dict[targ['type']]['targs'] += 1
|
91 |
+
# is there a span that matches exactly?
|
92 |
+
for pred in sent_preds:
|
93 |
+
if pred['index'][0] == targ['index'][0] and pred['index'][1] == targ['index'][1]:
|
94 |
+
stat_dict['overall']['unl_tp'] += 1
|
95 |
+
# if so do the tags match exactly?
|
96 |
+
if pred['type'] == targ['type']:
|
97 |
+
stat_dict['overall']['lab_tp'] += 1
|
98 |
+
stat_dict[targ['type']]['lab_tp'] += 1
|
99 |
+
|
100 |
+
for k in stat_dict.keys():
|
101 |
+
if k == 'overall':
|
102 |
+
stat_dict[k]['unl_p'] = stat_dict[k]['unl_tp'] / stat_dict[k]['preds'] if stat_dict[k]['preds'] else 0
|
103 |
+
stat_dict[k]['unl_r'] = stat_dict[k]['unl_tp'] / stat_dict[k]['targs'] if stat_dict[k]['targs'] else 0
|
104 |
+
stat_dict[k]['unl_f1'] = 2 * stat_dict[k]['unl_p'] * stat_dict[k]['unl_r'] / (
|
105 |
+
stat_dict[k]['unl_p'] + stat_dict[k]['unl_r']) if (
|
106 |
+
stat_dict[k]['unl_p'] + stat_dict[k]['unl_r']) else 0
|
107 |
+
stat_dict[k]['lab_p'] = stat_dict[k]['lab_tp'] / stat_dict[k]['preds'] if stat_dict[k]['preds'] else 0
|
108 |
+
stat_dict[k]['lab_r'] = stat_dict[k]['lab_tp'] / stat_dict[k]['targs'] if stat_dict[k]['targs'] else 0
|
109 |
+
stat_dict[k]['lab_f1'] = 2 * stat_dict[k]['lab_p'] * stat_dict[k]['lab_r'] / (
|
110 |
+
stat_dict[k]['lab_p'] + stat_dict[k]['lab_r']) if (stat_dict[k]['lab_p'] + stat_dict[k]['lab_r']) else 0
|
111 |
+
class_f1s = [v['lab_f1'] for k, v in stat_dict.items() if k != 'overall']
|
112 |
+
stat_dict['overall']['macro_lab_f1'] = sum(class_f1s) / len(class_f1s)
|
113 |
+
return stat_dict
|
114 |
+
|
115 |
+
|
116 |
+
def main(args):
|
117 |
+
global device
|
118 |
+
device = torch.device('cuda' if use_cuda else 'cpu')
|
119 |
+
|
120 |
+
test_columns = read_conll_ner(args.test_path)
|
121 |
+
test_docs = split_conll_docs(test_columns[0])
|
122 |
+
test_data = create_context_data(test_docs, args.context_size)
|
123 |
+
|
124 |
+
sents = [td[0] for td in test_data]
|
125 |
+
pos = [td[1] for td in test_data]
|
126 |
+
|
127 |
+
if len(args.model_path) > 1 or args.span_model_path is not None:
|
128 |
+
model = StagedEnsemble(model_paths=args.model_path, span_model_paths=args.span_model_path, device=device)
|
129 |
+
else:
|
130 |
+
model = EntNet.load_model(args.model_path[0], device=device)
|
131 |
+
model.to(device)
|
132 |
+
|
133 |
+
BATCH_SIZE = args.batch_size
|
134 |
+
res = classify(model, sents, pos, BATCH_SIZE)
|
135 |
+
targets = [td[2] for td in test_data]
|
136 |
+
|
137 |
+
targ_tags = [entities_from_token_classes(td[2]) for td in test_data]
|
138 |
+
pred_tags = [entities_from_token_classes([t[1] for t in r]) for r in res]
|
139 |
+
result = calc_f1(targ_tags, pred_tags)
|
140 |
+
|
141 |
+
print(f'Overall unlabelled - F1:{result["overall"]["unl_f1"]}, '
|
142 |
+
f'P:{result["overall"]["unl_p"]}, '
|
143 |
+
f'R:{result["overall"]["unl_r"]}')
|
144 |
+
print(f'Overall labelled - Micro F1:{result["overall"]["lab_f1"]}, '
|
145 |
+
f'P:{result["overall"]["lab_p"]}, '
|
146 |
+
f'R:{result["overall"]["lab_r"]}')
|
147 |
+
print(f'Overall labelled - Macro F1:{result["overall"]["macro_lab_f1"]}')
|
148 |
+
for k, v in result.items():
|
149 |
+
if k == 'overall':
|
150 |
+
continue
|
151 |
+
print(f'{k} - F1:{v["lab_f1"]}, P:{v["lab_p"]}, R:{v["lab_r"]}')
|
152 |
+
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
parser = argparse.ArgumentParser()
|
156 |
+
parser.add_argument('--model_path', type=str, nargs='+', default=None, required=True, help='')
|
157 |
+
parser.add_argument('--span_model_path', type=str, nargs='*', default=None, help='')
|
158 |
+
# parser.add_argument('--network_type', type=str,
|
159 |
+
# choices=['span', 'entity', 'joint'], required=True,
|
160 |
+
# default=None, help='If entity is chosen, a path to a '
|
161 |
+
# 'span model is required also')
|
162 |
+
parser.add_argument('--test_path', type=str, default=None, help='')
|
163 |
+
parser.add_argument('--context_size', type=int, default=1, help='')
|
164 |
+
parser.add_argument('--batch_size', type=int, default=8, help='')
|
165 |
+
# parser.add_argument('--cuda_id', type=int, default=0, help='')
|
166 |
+
|
167 |
+
args = parser.parse_args()
|
168 |
+
main(args)
|