nehalelkaref commited on
Commit
8a9a5d7
·
1 Parent(s): 22bbb24

Delete representation.py

Browse files
Files changed (1) hide show
  1. representation.py +0 -90
representation.py DELETED
@@ -1,90 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from transformers import AutoModel, AutoTokenizer
4
-
5
- DEFAULT_DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
6
-
7
-
8
- class TransformerRepresentation(nn.Module):
9
- def __init__(self, model_name='bert-base-uncased',
10
- transformer_kwargs={'attention_probs_dropout_prob': 0.1,
11
- 'hidden_dropout_prob': 0.1},
12
- device=DEFAULT_DEVICE):
13
- super(TransformerRepresentation, self).__init__()
14
- self.tokenizer = AutoTokenizer.from_pretrained(model_name)
15
- self.model = AutoModel.from_pretrained(model_name,
16
- output_hidden_states=True,
17
- **transformer_kwargs)
18
- self.embedding_dim = self.model.config.hidden_size
19
- self.device = device
20
-
21
- @staticmethod
22
- def add_subword_maps(texts, encodings):
23
- for encoding, t in zip(encodings, texts):
24
- encoding.subword_map = [encoding.word_to_tokens(i)
25
- for i, _ in enumerate(t)]
26
-
27
- @staticmethod
28
- def apply_token_pooling_strategy(outputs, encodings, strategy='first'):
29
- """
30
- Applies a token pooling strategy for pretokenized inputs based on
31
- a sub-word mapping of words to tokens.
32
-
33
- :param outputs: Output of the application of a `TransformerRepresentation.model` to a pretokenized input.
34
- :param encodings: Encodings from the application of `TransformerRepresentation.tokenizer` to a pretokenized input.
35
- :param strategy: One of ['first', 'last', 'sum', 'average']. Defaults to 'first'.
36
- :return:
37
- """
38
- vec_map = [[vecs[m[0]:m[1]] for m in encoding.subword_map
39
- if m is not None] # Only return vectors for words that were not truncated during tokenization
40
- for vecs, encoding
41
- in zip(outputs.last_hidden_state.unbind(), encodings)]
42
- if strategy == 'first':
43
- return [torch.stack([vec[0] for vec in vm]) if vm else torch.zeros(0) for vm in vec_map]
44
- elif strategy == 'last':
45
- return [torch.stack([vec[-1] for vec in vm]) if vm else torch.zeros(0) for vm in vec_map]
46
- elif strategy == 'sum':
47
- return [torch.stack([torch.sum(vec, dim=0) for vec in vm]) if vm else torch.zeros(0) for vm in vec_map]
48
- elif strategy == 'average':
49
- return [torch.stack([torch.sum(vec, dim=0)/len(vec) for vec in vm]) if vm else torch.zeros(0) for vm in vec_map]
50
- return vec_map
51
-
52
- def add_special_tokens(self, tokens):
53
- self.tokenizer.add_special_tokens({'additional_special_tokens': self.tokenizer.additional_special_tokens + tokens})
54
- self.model.resize_token_embeddings(len(self.tokenizer))
55
-
56
- def forward(self, text, is_pretokenized=False, add_special_tokens=True, token_pooling='first'):
57
- inputs = self.tokenizer(text, padding='longest',
58
- is_split_into_words=is_pretokenized,
59
- add_special_tokens=add_special_tokens,
60
- return_tensors='pt',
61
- max_length=512,
62
- truncation=True).to(self.device)
63
- output = self.model(**inputs.to(self.device))
64
- if is_pretokenized:
65
- self.add_subword_maps(text, [i for i in inputs.encodings])
66
- output.pooled_tokens = self.apply_token_pooling_strategy(
67
- output, [i for i in inputs.encodings], strategy=token_pooling)
68
- return output
69
-
70
-
71
- if __name__ == 'main':
72
- toks = ['Tom', 'Thabane', 'resigned', 'in', 'October', 'last', 'year',
73
- 'to', 'form', 'the', 'All', 'Basotho', 'Convention', '-LRB-',
74
- 'ABC', '-RRB-', ',', 'crossing', 'the', 'floor', 'with', '17',
75
- 'members', 'of', 'parliament', ',', 'causing', 'constitutional',
76
- 'monarch', 'King', 'Letsie', 'III', 'to', 'dissolve',
77
- 'parliament', 'and', 'call', 'the', 'snap', 'election', '.']
78
- e1_type = 'PERSON'
79
- e2_type = 'ORGANIZATION'
80
- e1_tokens = [0, 1]
81
- e2_tokens = [10, 12]
82
- text = [['EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'lamb', '.'],
83
- ['Peter', 'Blackburn'],
84
- ['BRUSSELS', '1996-08-22'],
85
- ['The', 'European', 'Commission', 'said', 'on', 'Thursday', 'it', 'disagreed', 'with', 'German', 'advice', 'to', 'consumers', 'to', 'shun', 'British', 'lamb', 'until', 'scientists', 'determine', 'whether', 'mad', 'cow', 'disease', 'can', 'be', 'transmitted', 'to', 'sheep', '.'],
86
- ['Germany', "'s", 'representative', 'to', 'the', 'European', 'Union', "'s", 'veterinary', 'committee', 'Werner', 'Zwingmann', 'said', 'on', 'Wednesday', 'consumers', 'should', 'buy', 'sheepmeat', 'from', 'countries', 'other', 'than', 'Britain', 'until', 'the', 'scientific', 'advice', 'was', 'clearer', '.'],
87
- ['"', 'We', 'do', "n't", 'support', 'any', 'such', 'recommendation', 'because', 'we', 'do', "n't", 'see', 'any', 'grounds', 'for', 'it', ',', '"', 'the', 'Commission', "'s", 'chief', 'spokesman', 'Nikolaus', 'van', 'der', 'Pas', 'told', 'a', 'news', 'briefing', '.'],
88
- ['He', 'said', 'further', 'scientific', 'study', 'was', 'required', 'and', 'if', 'it', 'was', 'found', 'that', 'action', 'was', 'needed', 'it', 'should', 'be', 'taken', 'by', 'the', 'European', 'Union', '.'],
89
- ['He', 'said', 'a', 'proposal', 'last', 'month', 'by', 'EU', 'Farm', 'Commissioner', 'Franz', 'Fischler', 'to', 'ban', 'sheep', 'brains', ',', 'spleens', 'and', 'spinal', 'cords', 'from', 'the', 'human', 'and', 'animal', 'food', 'chains', 'was', 'a', 'highly', 'specific', 'and', 'precautionary', 'move', 'to', 'protect', 'human', 'health', '.']]
90
- model = TransformerRepresentation()