import gradio as gr import numpy as np from huggingface_hub import hf_hub_download import os def predict_label(text): ip = text.split() ip_len = [len(ip)] scores = extract_spannet_scores(span_model,ip,ip_len, pos_col=1, task_col=2) pooled_scores = pool_span_scores(scores, ip_len) return pooled_scores if __name__ == '__main__': space_key = os.environ.get('key') filenames = ['network.py', 'layers.py', 'utils.py', 'representation.py', 'predict.py'] for file in filenames: hf_hub_download('nehalelkaref/stagedNER', filename=file, local_dir='src', token=space_key) from src.predict import extract_spannet_scores,pool_span_scores from src.network import SpanNet, EntNet span_path = 'models/span.model' # span_msa_path = 'models/sp' span_model = SpanNet.load_model(model_path) iface = gr.Interface(fn=predict_label, inputs="text", outputs="text") iface.launch(show_api=False)