nehatarey commited on
Commit
923ae5f
·
1 Parent(s): a606a61

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -42
app.py CHANGED
@@ -30,47 +30,8 @@ text_splitter = RecursiveCharacterTextSplitter(
30
 
31
  documents = text_splitter.split_documents(data)
32
 
33
-
34
  print("Got docs split")
35
- #Input openai api key
36
- # Check if the OpenAI API Key is empty
37
- def check_api_key(api_key):
38
- if api_key == "":
39
- return False
40
- return True
41
-
42
-
43
-
44
- # Create the Gradio interface
45
- def gradio_interface(api_key):
46
- if not check_api_key(api_key):
47
- return "API key is empty. Please provide a valid API key."
48
- else:
49
- # Create the second page interface
50
- question_input = gr.inputs.Textbox(label="Question")
51
- answer_output = gr.outputs.Textbox(label="Answer")
52
-
53
- # Function for the second page interface
54
- def infer_question(question):
55
- answer = make_inference(question)
56
- return answer
57
-
58
- # Define the second page of the Gradio interface
59
- second_page = gr.Interface(fn=infer_question, inputs=question_input, outputs=answer_output, title="Ask me about Ted Lasso 📺⚽")
60
-
61
- # Launch the second page interface
62
- second_page.launch()
63
-
64
- # Define the input interface for the first page (OpenAI API Key entry)
65
- api_key_input = gr.inputs.Textbox(label="OpenAI API Key")
66
-
67
- # Create the first page interface
68
- first_page = gr.Interface(fn=gradio_interface, inputs=api_key_input, title="OpenAI API Key Entry")
69
-
70
- # Launch the first page interface
71
- first_page.launch()
72
 
73
- print("got API key")
74
  # Create the embeddings
75
  embeddings = OpenAIEmbeddings()
76
  #Load the model
@@ -85,10 +46,23 @@ print("Created retriever")
85
  #create the QA chain
86
  ted_lasso_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever)
87
  # Function to make inferences and provide answers
88
- def make_inference(question):
89
- # Perform inference using the question and return the answer
90
  print("reached inference")
91
- return ted_lasso_qa.run(question)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
 
94
 
 
30
 
31
  documents = text_splitter.split_documents(data)
32
 
 
33
  print("Got docs split")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
 
35
  # Create the embeddings
36
  embeddings = OpenAIEmbeddings()
37
  #Load the model
 
46
  #create the QA chain
47
  ted_lasso_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever)
48
  # Function to make inferences and provide answers
49
+ def make_inference(query):
 
50
  print("reached inference")
51
+ return ted_lasso_qa.run(query)
52
+
53
+ if __name__ == "__main__":
54
+ # make a gradio interface
55
+ import gradio as gr
56
+
57
+ gr.Interface(
58
+ make_inference,
59
+ [
60
+ gr.inputs.Textbox(lines=2, label="Query"),
61
+ ],
62
+ gr.outputs.Textbox(label="Response"),
63
+ title="Ask me about Ted Lasso 📺⚽"
64
+ description="Ask me about Ted Lasso 📺⚽ is a tool that allows you to ask questions the tv series Ted Lasso",
65
+ ).launch()
66
 
67
 
68