Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ from torchvision import models, transforms
|
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
5 |
|
6 |
-
# Mendefinisikan nama kelas
|
7 |
class_names = [
|
8 |
"calculus",
|
9 |
"caries",
|
@@ -13,26 +12,21 @@ class_names = [
|
|
13 |
"tooth_discoloration"
|
14 |
]
|
15 |
|
16 |
-
# Mengatur jumlah kelas
|
17 |
num_classes = len(class_names)
|
18 |
|
19 |
-
|
20 |
-
model = models.resnet50(pretrained=False)
|
21 |
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)
|
22 |
|
23 |
-
# Memuat bobot model (sesuaikan path jika diperlukan)
|
24 |
model.load_state_dict(torch.load('best_model.pth', map_location=torch.device('cpu')))
|
25 |
model.eval()
|
26 |
|
27 |
-
# Mengatur transformasi preprocessing
|
28 |
preprocess = transforms.Compose([
|
29 |
transforms.Resize((224, 224)),
|
30 |
transforms.ToTensor(),
|
31 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
32 |
])
|
33 |
|
34 |
-
|
35 |
-
def predict_image(image, model, preprocess, class_names):
|
36 |
processed_image = preprocess(image).unsqueeze(0)
|
37 |
|
38 |
with torch.no_grad():
|
@@ -42,14 +36,12 @@ def predict_image(image, model, preprocess, class_names):
|
|
42 |
|
43 |
return predicted_class
|
44 |
|
45 |
-
# Membuat interface Gradio
|
46 |
iface = gr.Interface(
|
47 |
fn=predict_image,
|
48 |
-
inputs=
|
49 |
outputs=gr.outputs.Label(num_top_classes=1),
|
50 |
title="Klasifikasi Gambar Medis",
|
51 |
description="Upload gambar untuk memprediksi kelasnya."
|
52 |
)
|
53 |
|
54 |
-
# Menjalankan aplikasi Gradio
|
55 |
iface.launch()
|
|
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
5 |
|
|
|
6 |
class_names = [
|
7 |
"calculus",
|
8 |
"caries",
|
|
|
12 |
"tooth_discoloration"
|
13 |
]
|
14 |
|
|
|
15 |
num_classes = len(class_names)
|
16 |
|
17 |
+
model = models.resnet50(weights=None)
|
|
|
18 |
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)
|
19 |
|
|
|
20 |
model.load_state_dict(torch.load('best_model.pth', map_location=torch.device('cpu')))
|
21 |
model.eval()
|
22 |
|
|
|
23 |
preprocess = transforms.Compose([
|
24 |
transforms.Resize((224, 224)),
|
25 |
transforms.ToTensor(),
|
26 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
27 |
])
|
28 |
|
29 |
+
def predict_image(image, model=model, preprocess=preprocess, class_names=class_names):
|
|
|
30 |
processed_image = preprocess(image).unsqueeze(0)
|
31 |
|
32 |
with torch.no_grad():
|
|
|
36 |
|
37 |
return predicted_class
|
38 |
|
|
|
39 |
iface = gr.Interface(
|
40 |
fn=predict_image,
|
41 |
+
inputs=gr.inputs.Image(type='pil'),
|
42 |
outputs=gr.outputs.Label(num_top_classes=1),
|
43 |
title="Klasifikasi Gambar Medis",
|
44 |
description="Upload gambar untuk memprediksi kelasnya."
|
45 |
)
|
46 |
|
|
|
47 |
iface.launch()
|