nekoniii3's picture
create new
ee98197
raw
history blame
5.88 kB
import torch
import math
import pathlib
import cv2
import numpy as np
import os
from imageio_ffmpeg import get_ffmpeg_exe
from scipy.ndimage import median_filter
tensor_interpolation = None
def get_tensor_interpolation_method():
return tensor_interpolation
def set_tensor_interpolation_method(is_slerp):
global tensor_interpolation
tensor_interpolation = slerp if is_slerp else linear
def linear(v1, v2, t):
return (1.0 - t) * v1 + t * v2
def slerp(
v0: torch.Tensor, v1: torch.Tensor, t: float, DOT_THRESHOLD: float = 0.9995
) -> torch.Tensor:
u0 = v0 / v0.norm()
u1 = v1 / v1.norm()
dot = (u0 * u1).sum()
if dot.abs() > DOT_THRESHOLD:
# logger.info(f'warning: v0 and v1 close to parallel, using linear interpolation instead.')
return (1.0 - t) * v0 + t * v1
omega = dot.acos()
return (((1.0 - t) * omega).sin() * v0 + (t * omega).sin() * v1) / omega.sin()
def draw_kps_image(image, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255)]):
stick_width = 4
limb_seq = np.array([[0, 2], [1, 2]])
kps = np.array(kps)
canvas = image
for i in range(len(limb_seq)):
index = limb_seq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = int(math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stick_width), angle, 0, 360, 1)
cv2.fillConvexPoly(canvas, polygon, [int(float(c) * 0.6) for c in color])
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
cv2.circle(canvas, (int(x), int(y)), 4, color, -1)
return canvas
def save_video(video_tensor, audio_path, output_path, fps=30.0):
pathlib.Path(output_path).parent.mkdir(exist_ok=True, parents=True)
video_tensor = video_tensor[0, ...]
_, num_frames, height, width = video_tensor.shape
video_tensor = video_tensor.permute(1, 2, 3, 0)
video_np = (video_tensor * 255).numpy().astype(np.uint8)
video_np_filtered = median_filter(video_np, size=(3, 3, 3, 1))
output_name = pathlib.Path(output_path).stem
temp_output_path = output_path.replace(output_name, output_name + '-temp')
video_writer = cv2.VideoWriter(temp_output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
for i in range(num_frames):
frame_image = video_np_filtered[i]
frame_image = cv2.cvtColor(frame_image, cv2.COLOR_RGB2BGR)
video_writer.write(frame_image)
video_writer.release()
cmd = (f'{get_ffmpeg_exe()} -i "{temp_output_path}" -i "{audio_path}" '
f'-map 0:v -map 1:a -c:v h264 -shortest -y "{output_path}" -loglevel quiet')
os.system(cmd)
os.system(f'rm -rf "{temp_output_path}"')
def compute_dist(x1, y1, x2, y2):
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
def compute_ratio(kps):
l_eye_x, l_eye_y = kps[0][0], kps[0][1]
r_eye_x, r_eye_y = kps[1][0], kps[1][1]
nose_x, nose_y = kps[2][0], kps[2][1]
d_left = compute_dist(l_eye_x, l_eye_y, nose_x, nose_y)
d_right = compute_dist(r_eye_x, r_eye_y, nose_x, nose_y)
ratio = d_left / (d_right + 1e-6)
return ratio
def point_to_line_dist(point, line_points):
point = np.array(point)
line_points = np.array(line_points)
line_vec = line_points[1] - line_points[0]
point_vec = point - line_points[0]
line_norm = line_vec / np.sqrt(np.sum(line_vec ** 2))
point_vec_scaled = point_vec * 1.0 / np.sqrt(np.sum(line_vec ** 2))
t = np.dot(line_norm, point_vec_scaled)
if t < 0.0:
t = 0.0
elif t > 1.0:
t = 1.0
nearest = line_points[0] + t * line_vec
dist = np.sqrt(np.sum((point - nearest) ** 2))
return dist
def get_face_size(kps):
# 0: left eye, 1: right eye, 2: nose
A = kps[0, :]
B = kps[1, :]
C = kps[2, :]
AB_dist = math.sqrt((A[0] - B[0])**2 + (A[1] - B[1])**2)
C_AB_dist = point_to_line_dist(C, [A, B])
return AB_dist, C_AB_dist
def get_rescale_params(kps_ref, kps_target):
kps_ref = np.array(kps_ref)
kps_target = np.array(kps_target)
ref_AB_dist, ref_C_AB_dist = get_face_size(kps_ref)
target_AB_dist, target_C_AB_dist = get_face_size(kps_target)
scale_width = ref_AB_dist / target_AB_dist
scale_height = ref_C_AB_dist / target_C_AB_dist
return scale_width, scale_height
def retarget_kps(ref_kps, tgt_kps_list, only_offset=True):
ref_kps = np.array(ref_kps)
tgt_kps_list = np.array(tgt_kps_list)
ref_ratio = compute_ratio(ref_kps)
ratio_delta = 10000
selected_tgt_kps_idx = None
for idx, tgt_kps in enumerate(tgt_kps_list):
tgt_ratio = compute_ratio(tgt_kps)
if math.fabs(tgt_ratio - ref_ratio) < ratio_delta:
selected_tgt_kps_idx = idx
ratio_delta = tgt_ratio
scale_width, scale_height = get_rescale_params(
kps_ref=ref_kps,
kps_target=tgt_kps_list[selected_tgt_kps_idx],
)
rescaled_tgt_kps_list = np.array(tgt_kps_list)
rescaled_tgt_kps_list[:, :, 0] *= scale_width
rescaled_tgt_kps_list[:, :, 1] *= scale_height
if only_offset:
nose_offset = rescaled_tgt_kps_list[:, 2, :] - rescaled_tgt_kps_list[0, 2, :]
nose_offset = nose_offset[:, np.newaxis, :]
ref_kps_repeat = np.tile(ref_kps, (tgt_kps_list.shape[0], 1, 1))
ref_kps_repeat[:, :, :] -= (nose_offset / 2.0)
rescaled_tgt_kps_list = ref_kps_repeat
else:
nose_offset_x = rescaled_tgt_kps_list[0, 2, 0] - ref_kps[2][0]
nose_offset_y = rescaled_tgt_kps_list[0, 2, 1] - ref_kps[2][1]
rescaled_tgt_kps_list[:, :, 0] -= nose_offset_x
rescaled_tgt_kps_list[:, :, 1] -= nose_offset_y
return rescaled_tgt_kps_list