Spaces:
Sleeping
Sleeping
import torch | |
import math | |
import pathlib | |
import cv2 | |
import numpy as np | |
import os | |
from imageio_ffmpeg import get_ffmpeg_exe | |
from scipy.ndimage import median_filter | |
tensor_interpolation = None | |
def get_tensor_interpolation_method(): | |
return tensor_interpolation | |
def set_tensor_interpolation_method(is_slerp): | |
global tensor_interpolation | |
tensor_interpolation = slerp if is_slerp else linear | |
def linear(v1, v2, t): | |
return (1.0 - t) * v1 + t * v2 | |
def slerp( | |
v0: torch.Tensor, v1: torch.Tensor, t: float, DOT_THRESHOLD: float = 0.9995 | |
) -> torch.Tensor: | |
u0 = v0 / v0.norm() | |
u1 = v1 / v1.norm() | |
dot = (u0 * u1).sum() | |
if dot.abs() > DOT_THRESHOLD: | |
# logger.info(f'warning: v0 and v1 close to parallel, using linear interpolation instead.') | |
return (1.0 - t) * v0 + t * v1 | |
omega = dot.acos() | |
return (((1.0 - t) * omega).sin() * v0 + (t * omega).sin() * v1) / omega.sin() | |
def draw_kps_image(image, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255)]): | |
stick_width = 4 | |
limb_seq = np.array([[0, 2], [1, 2]]) | |
kps = np.array(kps) | |
canvas = image | |
for i in range(len(limb_seq)): | |
index = limb_seq[i] | |
color = color_list[index[0]] | |
x = kps[index][:, 0] | |
y = kps[index][:, 1] | |
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 | |
angle = int(math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))) | |
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stick_width), angle, 0, 360, 1) | |
cv2.fillConvexPoly(canvas, polygon, [int(float(c) * 0.6) for c in color]) | |
for idx_kp, kp in enumerate(kps): | |
color = color_list[idx_kp] | |
x, y = kp | |
cv2.circle(canvas, (int(x), int(y)), 4, color, -1) | |
return canvas | |
def save_video(video_tensor, audio_path, output_path, fps=30.0): | |
pathlib.Path(output_path).parent.mkdir(exist_ok=True, parents=True) | |
video_tensor = video_tensor[0, ...] | |
_, num_frames, height, width = video_tensor.shape | |
video_tensor = video_tensor.permute(1, 2, 3, 0) | |
video_np = (video_tensor * 255).numpy().astype(np.uint8) | |
video_np_filtered = median_filter(video_np, size=(3, 3, 3, 1)) | |
output_name = pathlib.Path(output_path).stem | |
temp_output_path = output_path.replace(output_name, output_name + '-temp') | |
video_writer = cv2.VideoWriter(temp_output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height)) | |
for i in range(num_frames): | |
frame_image = video_np_filtered[i] | |
frame_image = cv2.cvtColor(frame_image, cv2.COLOR_RGB2BGR) | |
video_writer.write(frame_image) | |
video_writer.release() | |
cmd = (f'{get_ffmpeg_exe()} -i "{temp_output_path}" -i "{audio_path}" ' | |
f'-map 0:v -map 1:a -c:v h264 -shortest -y "{output_path}" -loglevel quiet') | |
os.system(cmd) | |
os.system(f'rm -rf "{temp_output_path}"') | |
def compute_dist(x1, y1, x2, y2): | |
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) | |
def compute_ratio(kps): | |
l_eye_x, l_eye_y = kps[0][0], kps[0][1] | |
r_eye_x, r_eye_y = kps[1][0], kps[1][1] | |
nose_x, nose_y = kps[2][0], kps[2][1] | |
d_left = compute_dist(l_eye_x, l_eye_y, nose_x, nose_y) | |
d_right = compute_dist(r_eye_x, r_eye_y, nose_x, nose_y) | |
ratio = d_left / (d_right + 1e-6) | |
return ratio | |
def point_to_line_dist(point, line_points): | |
point = np.array(point) | |
line_points = np.array(line_points) | |
line_vec = line_points[1] - line_points[0] | |
point_vec = point - line_points[0] | |
line_norm = line_vec / np.sqrt(np.sum(line_vec ** 2)) | |
point_vec_scaled = point_vec * 1.0 / np.sqrt(np.sum(line_vec ** 2)) | |
t = np.dot(line_norm, point_vec_scaled) | |
if t < 0.0: | |
t = 0.0 | |
elif t > 1.0: | |
t = 1.0 | |
nearest = line_points[0] + t * line_vec | |
dist = np.sqrt(np.sum((point - nearest) ** 2)) | |
return dist | |
def get_face_size(kps): | |
# 0: left eye, 1: right eye, 2: nose | |
A = kps[0, :] | |
B = kps[1, :] | |
C = kps[2, :] | |
AB_dist = math.sqrt((A[0] - B[0])**2 + (A[1] - B[1])**2) | |
C_AB_dist = point_to_line_dist(C, [A, B]) | |
return AB_dist, C_AB_dist | |
def get_rescale_params(kps_ref, kps_target): | |
kps_ref = np.array(kps_ref) | |
kps_target = np.array(kps_target) | |
ref_AB_dist, ref_C_AB_dist = get_face_size(kps_ref) | |
target_AB_dist, target_C_AB_dist = get_face_size(kps_target) | |
scale_width = ref_AB_dist / target_AB_dist | |
scale_height = ref_C_AB_dist / target_C_AB_dist | |
return scale_width, scale_height | |
def retarget_kps(ref_kps, tgt_kps_list, only_offset=True): | |
ref_kps = np.array(ref_kps) | |
tgt_kps_list = np.array(tgt_kps_list) | |
ref_ratio = compute_ratio(ref_kps) | |
ratio_delta = 10000 | |
selected_tgt_kps_idx = None | |
for idx, tgt_kps in enumerate(tgt_kps_list): | |
tgt_ratio = compute_ratio(tgt_kps) | |
if math.fabs(tgt_ratio - ref_ratio) < ratio_delta: | |
selected_tgt_kps_idx = idx | |
ratio_delta = tgt_ratio | |
scale_width, scale_height = get_rescale_params( | |
kps_ref=ref_kps, | |
kps_target=tgt_kps_list[selected_tgt_kps_idx], | |
) | |
rescaled_tgt_kps_list = np.array(tgt_kps_list) | |
rescaled_tgt_kps_list[:, :, 0] *= scale_width | |
rescaled_tgt_kps_list[:, :, 1] *= scale_height | |
if only_offset: | |
nose_offset = rescaled_tgt_kps_list[:, 2, :] - rescaled_tgt_kps_list[0, 2, :] | |
nose_offset = nose_offset[:, np.newaxis, :] | |
ref_kps_repeat = np.tile(ref_kps, (tgt_kps_list.shape[0], 1, 1)) | |
ref_kps_repeat[:, :, :] -= (nose_offset / 2.0) | |
rescaled_tgt_kps_list = ref_kps_repeat | |
else: | |
nose_offset_x = rescaled_tgt_kps_list[0, 2, 0] - ref_kps[2][0] | |
nose_offset_y = rescaled_tgt_kps_list[0, 2, 1] - ref_kps[2][1] | |
rescaled_tgt_kps_list[:, :, 0] -= nose_offset_x | |
rescaled_tgt_kps_list[:, :, 1] -= nose_offset_y | |
return rescaled_tgt_kps_list | |