Spaces:
Sleeping
Sleeping
from typing import Tuple | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.models.modeling_utils import ModelMixin | |
from .motion_module import zero_module | |
from .resnet import InflatedConv3d | |
class VKpsGuider(ModelMixin): | |
def __init__( | |
self, | |
conditioning_embedding_channels: int, | |
conditioning_channels: int = 3, | |
block_out_channels: Tuple[int] = (16, 32, 64, 128), | |
): | |
super().__init__() | |
self.conv_in = InflatedConv3d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) | |
self.blocks = nn.ModuleList([]) | |
for i in range(len(block_out_channels) - 1): | |
channel_in = block_out_channels[i] | |
channel_out = block_out_channels[i + 1] | |
self.blocks.append(InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)) | |
self.blocks.append(InflatedConv3d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) | |
self.conv_out = zero_module(InflatedConv3d( | |
block_out_channels[-1], | |
conditioning_embedding_channels, | |
kernel_size=3, | |
padding=1, | |
)) | |
def forward(self, conditioning): | |
embedding = self.conv_in(conditioning) | |
embedding = F.silu(embedding) | |
for block in self.blocks: | |
embedding = block(embedding) | |
embedding = F.silu(embedding) | |
embedding = self.conv_out(embedding) | |
return embedding | |