Spaces:
Sleeping
Sleeping
create new
Browse files- app.py +61 -0
- inference.py +320 -0
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import datetime
|
4 |
+
import inference
|
5 |
+
|
6 |
+
example1 = ["sample_data/ref1.jpg", "sample_data/ano.mp3"]
|
7 |
+
example2 = ["sample_data/ref2.jpg", "sample_data/rakugo.mp3"]
|
8 |
+
|
9 |
+
def fix_face_video(input_image, input_audio):
|
10 |
+
|
11 |
+
# 調査用
|
12 |
+
import subprocess
|
13 |
+
|
14 |
+
cmd = ["lsb_release", "-a"]
|
15 |
+
result = subprocess.run(cmd, capture_output=True)
|
16 |
+
print(result.stdout.decode("utf-8"))
|
17 |
+
|
18 |
+
cmd = ["pip", "list"]
|
19 |
+
result = subprocess.run(cmd, capture_output=True)
|
20 |
+
print(result.stdout.decode("utf-8"))
|
21 |
+
|
22 |
+
cmd = ["nvcc", "-V"]
|
23 |
+
result = subprocess.run(cmd, capture_output=True)
|
24 |
+
print(result.stdout.decode("utf-8"))
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
dt = datetime.datetime.now() + datetime.timedelta(hours=9)
|
30 |
+
fol_name = dt.strftime("%Y%m%d")
|
31 |
+
file_name = dt.strftime("%H%M%S")
|
32 |
+
|
33 |
+
out_video = "./output/" + fol_name+ "/fix_face_" + file_name + ".mp4"
|
34 |
+
|
35 |
+
inference.fix_face(input_image, input_audio, out_video)
|
36 |
+
|
37 |
+
return out_video
|
38 |
+
|
39 |
+
image = gr.Image(label="画像(image)", type="filepath")
|
40 |
+
audio = gr.File(label="音声(audio)", file_types=[".mp3", ".MP3"])
|
41 |
+
out_video = gr.Video(label="Fix Face Video")
|
42 |
+
btn = gr.Button("送信", variant="primary")
|
43 |
+
|
44 |
+
title = "V_Express"
|
45 |
+
description = "<div style='text-align: center;'><h3>画像と音声だけで生成できます。(Using only images and audio)"
|
46 |
+
description += "<br>This uses the following V-Express \"https://github.com/tencent-ailab/V-Express\"</h3></div>"
|
47 |
+
|
48 |
+
demo = gr.Interface(
|
49 |
+
fn=fix_face_video,
|
50 |
+
inputs=[image, audio],
|
51 |
+
examples=[example1, example2],
|
52 |
+
outputs=[out_video],
|
53 |
+
title=title,
|
54 |
+
submit_btn=btn,
|
55 |
+
clear_btn=None,
|
56 |
+
description=description,
|
57 |
+
allow_flagging="never"
|
58 |
+
)
|
59 |
+
|
60 |
+
demo.queue()
|
61 |
+
demo.launch(share=True, debug=True)
|
inference.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import os
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torchaudio.functional
|
8 |
+
import torchvision.io
|
9 |
+
from PIL import Image
|
10 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
11 |
+
from diffusers.utils.import_utils import is_xformers_available
|
12 |
+
from diffusers.utils.torch_utils import randn_tensor
|
13 |
+
from insightface.app import FaceAnalysis
|
14 |
+
from omegaconf import OmegaConf
|
15 |
+
from transformers import CLIPVisionModelWithProjection, Wav2Vec2Model, Wav2Vec2Processor
|
16 |
+
|
17 |
+
from modules import UNet2DConditionModel, UNet3DConditionModel, VKpsGuider, AudioProjection
|
18 |
+
from pipelines import VExpressPipeline
|
19 |
+
from pipelines.utils import draw_kps_image, save_video
|
20 |
+
from pipelines.utils import retarget_kps
|
21 |
+
|
22 |
+
import spaces
|
23 |
+
|
24 |
+
# 引数用ダミークラス
|
25 |
+
class args_dum:
|
26 |
+
|
27 |
+
def __init__(self):
|
28 |
+
self.unet_config_path='./model_ckpts/stable-diffusion-v1-5/unet/config.json'
|
29 |
+
self.vae_path='./model_ckpts/sd-vae-ft-mse/'
|
30 |
+
self.audio_encoder_path='./model_ckpts/wav2vec2-base-960h/'
|
31 |
+
self.insightface_model_path='./model_ckpts/insightface_models/'
|
32 |
+
self.denoising_unet_path='./model_ckpts/v-express/denoising_unet.pth'
|
33 |
+
self.reference_net_path='./model_ckpts/v-express/reference_net.pth'
|
34 |
+
self.v_kps_guider_path='./model_ckpts/v-express/v_kps_guider.pth'
|
35 |
+
self.audio_projection_path='./model_ckpts/v-express/audio_projection.pth'
|
36 |
+
self.motion_module_path='./model_ckpts/v-express/motion_module.pth'
|
37 |
+
self.retarget_strategy='fix_face'
|
38 |
+
self.device='cuda'
|
39 |
+
self.gpu_id=0
|
40 |
+
self.dtype='fp16'
|
41 |
+
self.num_pad_audio_frames=2
|
42 |
+
self.standard_audio_sampling_rate=16000
|
43 |
+
self.reference_image_path='./test_samples/short_case/tys/ref.jpg'
|
44 |
+
self.audio_path='./test_samples/short_case/tys/aud.mp3'
|
45 |
+
self.kps_path='./test_samples/emo/talk_emotion/kps.pth'
|
46 |
+
self.output_path='./output/short_case/talk_tys_fix_face.mp4'
|
47 |
+
self.image_width=512
|
48 |
+
self.image_height=512
|
49 |
+
self.fps=30.0
|
50 |
+
self.seed=42
|
51 |
+
self.num_inference_steps=25
|
52 |
+
self.guidance_scale=3.5
|
53 |
+
self.context_frames=12
|
54 |
+
self.context_stride=1
|
55 |
+
self.context_overlap=4
|
56 |
+
self.reference_attention_weight=0.95
|
57 |
+
self.audio_attention_weight=3.0
|
58 |
+
|
59 |
+
# def parse_args():
|
60 |
+
# parser = argparse.ArgumentParser()
|
61 |
+
|
62 |
+
# parser.add_argument('--unet_config_path', type=str, default='./model_ckpts/stable-diffusion-v1-5/unet/config.json')
|
63 |
+
# parser.add_argument('--vae_path', type=str, default='./model_ckpts/sd-vae-ft-mse/')
|
64 |
+
# parser.add_argument('--audio_encoder_path', type=str, default='./model_ckpts/wav2vec2-base-960h/')
|
65 |
+
# parser.add_argument('--insightface_model_path', type=str, default='./model_ckpts/insightface_models/')
|
66 |
+
|
67 |
+
# parser.add_argument('--denoising_unet_path', type=str, default='./model_ckpts/v-express/denoising_unet.pth')
|
68 |
+
# parser.add_argument('--reference_net_path', type=str, default='./model_ckpts/v-express/reference_net.pth')
|
69 |
+
# parser.add_argument('--v_kps_guider_path', type=str, default='./model_ckpts/v-express/v_kps_guider.pth')
|
70 |
+
# parser.add_argument('--audio_projection_path', type=str, default='./model_ckpts/v-express/audio_projection.pth')
|
71 |
+
# parser.add_argument('--motion_module_path', type=str, default='./model_ckpts/v-express/motion_module.pth')
|
72 |
+
|
73 |
+
# parser.add_argument('--retarget_strategy', type=str, default='fix_face') # fix_face, no_retarget, offset_retarget, naive_retarget
|
74 |
+
|
75 |
+
# parser.add_argument('--device', type=str, default='cuda')
|
76 |
+
# parser.add_argument('--gpu_id', type=int, default=0)
|
77 |
+
# parser.add_argument('--dtype', type=str, default='fp16')
|
78 |
+
|
79 |
+
# parser.add_argument('--num_pad_audio_frames', type=int, default=2)
|
80 |
+
# parser.add_argument('--standard_audio_sampling_rate', type=int, default=16000)
|
81 |
+
|
82 |
+
# parser.add_argument('--reference_image_path', type=str, default='./test_samples/emo/talk_emotion/ref.jpg')
|
83 |
+
# parser.add_argument('--audio_path', type=str, default='./test_samples/emo/talk_emotion/aud.mp3')
|
84 |
+
# parser.add_argument('--kps_path', type=str, default='./test_samples/emo/talk_emotion/kps.pth')
|
85 |
+
# parser.add_argument('--output_path', type=str, default='./output/emo/talk_emotion.mp4')
|
86 |
+
|
87 |
+
# parser.add_argument('--image_width', type=int, default=512)
|
88 |
+
# parser.add_argument('--image_height', type=int, default=512)
|
89 |
+
# parser.add_argument('--fps', type=float, default=30.0)
|
90 |
+
# parser.add_argument('--seed', type=int, default=42)
|
91 |
+
# parser.add_argument('--num_inference_steps', type=int, default=25)
|
92 |
+
# parser.add_argument('--guidance_scale', type=float, default=3.5)
|
93 |
+
# parser.add_argument('--context_frames', type=int, default=12)
|
94 |
+
# parser.add_argument('--context_stride', type=int, default=1)
|
95 |
+
# parser.add_argument('--context_overlap', type=int, default=4)
|
96 |
+
# parser.add_argument('--reference_attention_weight', default=0.95, type=float)
|
97 |
+
# parser.add_argument('--audio_attention_weight', default=3., type=float)
|
98 |
+
|
99 |
+
# args = parser.parse_args()
|
100 |
+
|
101 |
+
# return args
|
102 |
+
|
103 |
+
|
104 |
+
def load_reference_net(unet_config_path, reference_net_path, dtype, device):
|
105 |
+
reference_net = UNet2DConditionModel.from_config(unet_config_path).to(dtype=dtype, device=device)
|
106 |
+
reference_net.load_state_dict(torch.load(reference_net_path, map_location="cpu"), strict=False)
|
107 |
+
print(f'Loaded weights of Reference Net from {reference_net_path}.')
|
108 |
+
return reference_net
|
109 |
+
|
110 |
+
|
111 |
+
def load_denoising_unet(unet_config_path, denoising_unet_path, motion_module_path, dtype, device):
|
112 |
+
inference_config_path = './inference_v2.yaml'
|
113 |
+
inference_config = OmegaConf.load(inference_config_path)
|
114 |
+
denoising_unet = UNet3DConditionModel.from_config_2d(
|
115 |
+
unet_config_path,
|
116 |
+
unet_additional_kwargs=inference_config.unet_additional_kwargs,
|
117 |
+
).to(dtype=dtype, device=device)
|
118 |
+
denoising_unet.load_state_dict(torch.load(denoising_unet_path, map_location="cpu"), strict=False)
|
119 |
+
print(f'Loaded weights of Denoising U-Net from {denoising_unet_path}.')
|
120 |
+
|
121 |
+
denoising_unet.load_state_dict(torch.load(motion_module_path, map_location="cpu"), strict=False)
|
122 |
+
print(f'Loaded weights of Denoising U-Net Motion Module from {motion_module_path}.')
|
123 |
+
|
124 |
+
return denoising_unet
|
125 |
+
|
126 |
+
|
127 |
+
def load_v_kps_guider(v_kps_guider_path, dtype, device):
|
128 |
+
v_kps_guider = VKpsGuider(320, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
|
129 |
+
v_kps_guider.load_state_dict(torch.load(v_kps_guider_path, map_location="cpu"))
|
130 |
+
print(f'Loaded weights of V-Kps Guider from {v_kps_guider_path}.')
|
131 |
+
return v_kps_guider
|
132 |
+
|
133 |
+
|
134 |
+
def load_audio_projection(
|
135 |
+
audio_projection_path,
|
136 |
+
dtype,
|
137 |
+
device,
|
138 |
+
inp_dim: int,
|
139 |
+
mid_dim: int,
|
140 |
+
out_dim: int,
|
141 |
+
inp_seq_len: int,
|
142 |
+
out_seq_len: int,
|
143 |
+
):
|
144 |
+
audio_projection = AudioProjection(
|
145 |
+
dim=mid_dim,
|
146 |
+
depth=4,
|
147 |
+
dim_head=64,
|
148 |
+
heads=12,
|
149 |
+
num_queries=out_seq_len,
|
150 |
+
embedding_dim=inp_dim,
|
151 |
+
output_dim=out_dim,
|
152 |
+
ff_mult=4,
|
153 |
+
max_seq_len=inp_seq_len,
|
154 |
+
).to(dtype=dtype, device=device)
|
155 |
+
audio_projection.load_state_dict(torch.load(audio_projection_path, map_location='cpu'))
|
156 |
+
print(f'Loaded weights of Audio Projection from {audio_projection_path}.')
|
157 |
+
return audio_projection
|
158 |
+
|
159 |
+
|
160 |
+
def get_scheduler():
|
161 |
+
inference_config_path = './inference_v2.yaml'
|
162 |
+
inference_config = OmegaConf.load(inference_config_path)
|
163 |
+
scheduler_kwargs = OmegaConf.to_container(inference_config.noise_scheduler_kwargs)
|
164 |
+
scheduler = DDIMScheduler(**scheduler_kwargs)
|
165 |
+
return scheduler
|
166 |
+
|
167 |
+
@spaces.GPU
|
168 |
+
def fix_face(image, audio, out_path):
|
169 |
+
# args = parse_args()
|
170 |
+
args = args_dum()
|
171 |
+
|
172 |
+
args.reference_image_path = image
|
173 |
+
args.audio_path = audio
|
174 |
+
args.output_path = out_path
|
175 |
+
|
176 |
+
# test
|
177 |
+
# print(args)
|
178 |
+
# return
|
179 |
+
|
180 |
+
device = torch.device(f'{args.device}:{args.gpu_id}' if args.device == 'cuda' else args.device)
|
181 |
+
dtype = torch.float16 if args.dtype == 'fp16' else torch.float32
|
182 |
+
|
183 |
+
vae_path = args.vae_path
|
184 |
+
audio_encoder_path = args.audio_encoder_path
|
185 |
+
|
186 |
+
vae = AutoencoderKL.from_pretrained(vae_path).to(dtype=dtype, device=device)
|
187 |
+
audio_encoder = Wav2Vec2Model.from_pretrained(audio_encoder_path).to(dtype=dtype, device=device)
|
188 |
+
audio_processor = Wav2Vec2Processor.from_pretrained(audio_encoder_path)
|
189 |
+
|
190 |
+
unet_config_path = args.unet_config_path
|
191 |
+
reference_net_path = args.reference_net_path
|
192 |
+
denoising_unet_path = args.denoising_unet_path
|
193 |
+
v_kps_guider_path = args.v_kps_guider_path
|
194 |
+
audio_projection_path = args.audio_projection_path
|
195 |
+
motion_module_path = args.motion_module_path
|
196 |
+
|
197 |
+
scheduler = get_scheduler()
|
198 |
+
reference_net = load_reference_net(unet_config_path, reference_net_path, dtype, device)
|
199 |
+
denoising_unet = load_denoising_unet(unet_config_path, denoising_unet_path, motion_module_path, dtype, device)
|
200 |
+
v_kps_guider = load_v_kps_guider(v_kps_guider_path, dtype, device)
|
201 |
+
audio_projection = load_audio_projection(
|
202 |
+
audio_projection_path,
|
203 |
+
dtype,
|
204 |
+
device,
|
205 |
+
inp_dim=denoising_unet.config.cross_attention_dim,
|
206 |
+
mid_dim=denoising_unet.config.cross_attention_dim,
|
207 |
+
out_dim=denoising_unet.config.cross_attention_dim,
|
208 |
+
inp_seq_len=2 * (2 * args.num_pad_audio_frames + 1),
|
209 |
+
out_seq_len=2 * args.num_pad_audio_frames + 1,
|
210 |
+
)
|
211 |
+
|
212 |
+
if is_xformers_available():
|
213 |
+
reference_net.enable_xformers_memory_efficient_attention()
|
214 |
+
denoising_unet.enable_xformers_memory_efficient_attention()
|
215 |
+
else:
|
216 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
217 |
+
|
218 |
+
generator = torch.manual_seed(args.seed)
|
219 |
+
pipeline = VExpressPipeline(
|
220 |
+
vae=vae,
|
221 |
+
reference_net=reference_net,
|
222 |
+
denoising_unet=denoising_unet,
|
223 |
+
v_kps_guider=v_kps_guider,
|
224 |
+
audio_processor=audio_processor,
|
225 |
+
audio_encoder=audio_encoder,
|
226 |
+
audio_projection=audio_projection,
|
227 |
+
scheduler=scheduler,
|
228 |
+
).to(dtype=dtype, device=device)
|
229 |
+
|
230 |
+
app = FaceAnalysis(
|
231 |
+
providers=['CUDAExecutionProvider' if args.device == 'cuda' else 'CPUExecutionProvider'],
|
232 |
+
provider_options=[{'device_id': args.gpu_id}] if args.device == 'cuda' else [],
|
233 |
+
root=args.insightface_model_path,
|
234 |
+
)
|
235 |
+
app.prepare(ctx_id=0, det_size=(args.image_height, args.image_width))
|
236 |
+
|
237 |
+
reference_image = Image.open(args.reference_image_path).convert('RGB')
|
238 |
+
reference_image = reference_image.resize((args.image_height, args.image_width))
|
239 |
+
|
240 |
+
reference_image_for_kps = cv2.imread(args.reference_image_path)
|
241 |
+
reference_image_for_kps = cv2.resize(reference_image_for_kps, (args.image_height, args.image_width))
|
242 |
+
reference_kps = app.get(reference_image_for_kps)[0].kps[:3]
|
243 |
+
|
244 |
+
_, audio_waveform, meta_info = torchvision.io.read_video(args.audio_path, pts_unit='sec')
|
245 |
+
audio_sampling_rate = meta_info['audio_fps']
|
246 |
+
print(f'Length of audio is {audio_waveform.shape[1]} with the sampling rate of {audio_sampling_rate}.')
|
247 |
+
if audio_sampling_rate != args.standard_audio_sampling_rate:
|
248 |
+
audio_waveform = torchaudio.functional.resample(
|
249 |
+
audio_waveform,
|
250 |
+
orig_freq=audio_sampling_rate,
|
251 |
+
new_freq=args.standard_audio_sampling_rate,
|
252 |
+
)
|
253 |
+
audio_waveform = audio_waveform.mean(dim=0)
|
254 |
+
|
255 |
+
duration = audio_waveform.shape[0] / args.standard_audio_sampling_rate
|
256 |
+
video_length = int(duration * args.fps)
|
257 |
+
print(f'The corresponding video length is {video_length}.')
|
258 |
+
|
259 |
+
if args.kps_path != "":
|
260 |
+
assert os.path.exists(args.kps_path), f'{args.kps_path} does not exist'
|
261 |
+
kps_sequence = torch.tensor(torch.load(args.kps_path)) # [len, 3, 2]
|
262 |
+
print(f'The original length of kps sequence is {kps_sequence.shape[0]}.')
|
263 |
+
kps_sequence = torch.nn.functional.interpolate(kps_sequence.permute(1, 2, 0), size=video_length, mode='linear')
|
264 |
+
kps_sequence = kps_sequence.permute(2, 0, 1)
|
265 |
+
print(f'The interpolated length of kps sequence is {kps_sequence.shape[0]}.')
|
266 |
+
|
267 |
+
retarget_strategy = args.retarget_strategy
|
268 |
+
if retarget_strategy == 'fix_face':
|
269 |
+
kps_sequence = torch.tensor([reference_kps] * video_length)
|
270 |
+
elif retarget_strategy == 'no_retarget':
|
271 |
+
kps_sequence = kps_sequence
|
272 |
+
elif retarget_strategy == 'offset_retarget':
|
273 |
+
kps_sequence = retarget_kps(reference_kps, kps_sequence, only_offset=True)
|
274 |
+
elif retarget_strategy == 'naive_retarget':
|
275 |
+
kps_sequence = retarget_kps(reference_kps, kps_sequence, only_offset=False)
|
276 |
+
else:
|
277 |
+
raise ValueError(f'The retarget strategy {retarget_strategy} is not supported.')
|
278 |
+
|
279 |
+
kps_images = []
|
280 |
+
for i in range(video_length):
|
281 |
+
kps_image = np.zeros_like(reference_image_for_kps)
|
282 |
+
kps_image = draw_kps_image(kps_image, kps_sequence[i])
|
283 |
+
kps_images.append(Image.fromarray(kps_image))
|
284 |
+
|
285 |
+
vae_scale_factor = 8
|
286 |
+
latent_height = args.image_height // vae_scale_factor
|
287 |
+
latent_width = args.image_width // vae_scale_factor
|
288 |
+
|
289 |
+
latent_shape = (1, 4, video_length, latent_height, latent_width)
|
290 |
+
vae_latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype)
|
291 |
+
|
292 |
+
video_latents = pipeline(
|
293 |
+
vae_latents=vae_latents,
|
294 |
+
reference_image=reference_image,
|
295 |
+
kps_images=kps_images,
|
296 |
+
audio_waveform=audio_waveform,
|
297 |
+
width=args.image_width,
|
298 |
+
height=args.image_height,
|
299 |
+
video_length=video_length,
|
300 |
+
num_inference_steps=args.num_inference_steps,
|
301 |
+
guidance_scale=args.guidance_scale,
|
302 |
+
context_frames=args.context_frames,
|
303 |
+
context_stride=args.context_stride,
|
304 |
+
context_overlap=args.context_overlap,
|
305 |
+
reference_attention_weight=args.reference_attention_weight,
|
306 |
+
audio_attention_weight=args.audio_attention_weight,
|
307 |
+
num_pad_audio_frames=args.num_pad_audio_frames,
|
308 |
+
generator=generator,
|
309 |
+
).video_latents
|
310 |
+
|
311 |
+
video_tensor = pipeline.decode_latents(video_latents)
|
312 |
+
if isinstance(video_tensor, np.ndarray):
|
313 |
+
video_tensor = torch.from_numpy(video_tensor)
|
314 |
+
|
315 |
+
save_video(video_tensor, args.audio_path, args.output_path, args.fps)
|
316 |
+
print(f'The generated video has been saved at {args.output_path}.')
|
317 |
+
|
318 |
+
|
319 |
+
# if __name__ == '__main__':
|
320 |
+
# main()
|