nelbarman053
commited on
Commit
·
18b304b
1
Parent(s):
5388fd0
XAI implementation added
Browse files- app.py +21 -24
- requirements.txt +0 -0
- xai/xai_visualization.png +0 -0
app.py
CHANGED
@@ -7,28 +7,14 @@ Original file is located at
|
|
7 |
https://colab.research.google.com/drive/1XRB_m0JRoi0KugiHw5WSPJzV0udfU69O
|
8 |
"""
|
9 |
|
10 |
-
# !nvidia-smi
|
11 |
-
|
12 |
-
# Commented out IPython magic to ensure Python compatibility.
|
13 |
-
# %reload_ext autoreload
|
14 |
-
# %autoreload 2
|
15 |
-
# %matplotlib inline
|
16 |
-
|
17 |
-
|
18 |
-
# Commented out IPython magic to ensure Python compatibility.
|
19 |
-
# %cd /content/drive/MyDrive/Bengali Fish Recognizer/
|
20 |
-
|
21 |
|
22 |
import cv2
|
23 |
-
import torch
|
24 |
import numpy as np
|
25 |
import gradio as gr
|
26 |
import matplotlib as plt
|
27 |
from fastai.vision.all import *
|
28 |
from torchvision import transforms
|
29 |
-
from torchvision.io import read_image
|
30 |
from pytorch_grad_cam import GradCAM
|
31 |
-
from pytorch_grad_cam.utils.image import show_cam_on_image
|
32 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
33 |
|
34 |
import pathlib
|
@@ -52,20 +38,22 @@ def xai_visualization(image, image_tensor, targeted_category, model, target_laye
|
|
52 |
|
53 |
mask = grayscale_cam[0, :]
|
54 |
|
|
|
|
|
|
|
|
|
55 |
plt.imshow(image)
|
56 |
|
57 |
-
plt.imshow(mask*255, cmap="plasma", alpha=0.
|
|
|
|
|
58 |
|
59 |
-
plt.show()
|
60 |
|
61 |
def preprocess_image(image_path):
|
62 |
-
# Reading image
|
63 |
-
# image = cv2.imread(image_path)
|
64 |
-
image = torchvision.io.read_image(image_path)
|
65 |
|
66 |
# Resizing an image
|
67 |
image = cv2.resize(
|
68 |
-
|
69 |
dsize=(224, 224),
|
70 |
interpolation=cv2.INTER_CUBIC)
|
71 |
|
@@ -103,17 +91,26 @@ def classify_image(image_path):
|
|
103 |
xai_visualization(image, img_tensor, targeted_category, pytorch_model, target_layer)
|
104 |
|
105 |
# print(f"Category with most probability: {np.argmax(probs)}")
|
|
|
106 |
|
107 |
-
return
|
108 |
|
109 |
# classify_image('test images/unknown_01.jpg')
|
110 |
|
111 |
|
112 |
-
inputs = gr.Image(
|
|
|
|
|
113 |
|
114 |
outputs = [
|
115 |
-
gr.Image(
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
]
|
118 |
|
119 |
examples = [
|
|
|
7 |
https://colab.research.google.com/drive/1XRB_m0JRoi0KugiHw5WSPJzV0udfU69O
|
8 |
"""
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
import cv2
|
|
|
12 |
import numpy as np
|
13 |
import gradio as gr
|
14 |
import matplotlib as plt
|
15 |
from fastai.vision.all import *
|
16 |
from torchvision import transforms
|
|
|
17 |
from pytorch_grad_cam import GradCAM
|
|
|
18 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
19 |
|
20 |
import pathlib
|
|
|
38 |
|
39 |
mask = grayscale_cam[0, :]
|
40 |
|
41 |
+
plt.figure(figsize=(5,5))
|
42 |
+
|
43 |
+
plt.axis('off')
|
44 |
+
|
45 |
plt.imshow(image)
|
46 |
|
47 |
+
plt.imshow(mask*255, cmap="plasma", alpha=0.7)
|
48 |
+
|
49 |
+
plt.savefig("xai/xai_visualization.png", dpi=150)
|
50 |
|
|
|
51 |
|
52 |
def preprocess_image(image_path):
|
|
|
|
|
|
|
53 |
|
54 |
# Resizing an image
|
55 |
image = cv2.resize(
|
56 |
+
image_path,
|
57 |
dsize=(224, 224),
|
58 |
interpolation=cv2.INTER_CUBIC)
|
59 |
|
|
|
91 |
xai_visualization(image, img_tensor, targeted_category, pytorch_model, target_layer)
|
92 |
|
93 |
# print(f"Category with most probability: {np.argmax(probs)}")
|
94 |
+
xai_image = "xai/xai_visualization.png"
|
95 |
|
96 |
+
return xai_image, dict(zip(labels, map(float, probs)))
|
97 |
|
98 |
# classify_image('test images/unknown_01.jpg')
|
99 |
|
100 |
|
101 |
+
inputs = gr.Image(
|
102 |
+
label = "Input Image"
|
103 |
+
)
|
104 |
|
105 |
outputs = [
|
106 |
+
gr.Image(
|
107 |
+
label = "GradCAM visualization",
|
108 |
+
show_label = True
|
109 |
+
),
|
110 |
+
gr.Label(
|
111 |
+
num_top_classes=5,
|
112 |
+
label="Predicted Category"
|
113 |
+
)
|
114 |
]
|
115 |
|
116 |
examples = [
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|
xai/xai_visualization.png
ADDED