nelbarman053 commited on
Commit
3548420
·
1 Parent(s): 9fca8bc

new updates

Browse files
Files changed (2) hide show
  1. app.py +124 -4
  2. xai/xai_visualization.png +0 -0
app.py CHANGED
@@ -17,9 +17,9 @@ from torchvision import transforms
17
  from pytorch_grad_cam import GradCAM
18
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
19
 
20
- # import pathlib
21
- # temp = pathlib.PosixPath
22
- # pathlib.PosixPath = pathlib.WindowsPath
23
 
24
  model = load_learner("models/recognizer_model.pkl")
25
 
@@ -28,6 +28,111 @@ pytorch_model = model.eval()
28
 
29
  labels = ['Ayre', 'Catla', 'Chital', 'Ilish', 'Kachki', 'Kajoli', 'Koi', 'Magur', 'Mola Dhela', 'Mrigal', 'Pabda', 'Pangash', 'Poa', 'Puti', 'Rui', 'Shing', 'Silver Carp', 'Taki', 'Telapia', 'Tengra']
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  def xai_visualization(image, image_tensor, targeted_category, model, target_layers):
32
 
33
  cam = GradCAM(model = model, target_layers = target_layers)
@@ -93,7 +198,19 @@ def classify_image(image_path):
93
  # print(f"Category with most probability: {np.argmax(probs)}")
94
  xai_image = "xai/xai_visualization.png"
95
 
96
- return xai_image, dict(zip(labels, map(float, probs)))
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
  # classify_image('test images/unknown_01.jpg')
99
 
@@ -107,6 +224,9 @@ outputs = [
107
  label = "GradCAM visualization",
108
  show_label = True
109
  ),
 
 
 
110
  gr.Label(
111
  num_top_classes=5,
112
  label="Predicted Category"
 
17
  from pytorch_grad_cam import GradCAM
18
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
19
 
20
+ import pathlib
21
+ temp = pathlib.PosixPath
22
+ pathlib.PosixPath = pathlib.WindowsPath
23
 
24
  model = load_learner("models/recognizer_model.pkl")
25
 
 
28
 
29
  labels = ['Ayre', 'Catla', 'Chital', 'Ilish', 'Kachki', 'Kajoli', 'Koi', 'Magur', 'Mola Dhela', 'Mrigal', 'Pabda', 'Pangash', 'Poa', 'Puti', 'Rui', 'Shing', 'Silver Carp', 'Taki', 'Telapia', 'Tengra']
30
 
31
+
32
+ found_and_test = {
33
+ 'Ayre' : {
34
+ 'found': 'Found in South and Southeast Asia',
35
+ 'taste': 'Sweet taste',
36
+ 'scientific name': 'Sperata aor',
37
+ },
38
+ 'Catla' : {
39
+ 'found': 'Native to South Asia',
40
+ 'taste': 'sweet and nutty flavors',
41
+ 'scientific name': 'Catla catla',
42
+ },
43
+ 'Chital' : {
44
+ 'found': 'Native to South and Southeast Asia',
45
+ 'taste': 'sweet taste',
46
+ 'scientific name': 'Chitala chitala',
47
+ },
48
+ 'Ilish' : {
49
+ 'found': 'Found in South Asia',
50
+ 'taste': 'sweet and salty taste',
51
+ 'scientific name': 'Tenualosa ilisha',
52
+ },
53
+ 'Kachki' : {
54
+ 'found': 'Found in South and Southeast Asia',
55
+ 'taste': 'great when fresh',
56
+ 'scientific name': 'Corica soborna Hamilo',
57
+ },
58
+ 'Kajoli' : {
59
+ 'found': 'Native to Asia',
60
+ 'taste': 'delicate and tastes divine',
61
+ 'scientific name': 'Ailia coila',
62
+ },
63
+ 'Koi' : {
64
+ 'found': 'Native to Asia and Europe',
65
+ 'taste': 'mild flavor and firm flesh that tastes slightly sweet',
66
+ 'scientific name': 'Cyprinus rubrofuscus',
67
+ },
68
+ 'Magur' : {
69
+ 'found': 'Native to Southeast Asia',
70
+ 'taste': 'delicate flavor',
71
+ 'scientific name': 'Clarias batrachus',
72
+ },
73
+ 'Mola Dhela' : {
74
+ 'found': 'Found in South Asia',
75
+ 'taste': 'black cod or lobster',
76
+ 'scientific name': 'Osteobrama cotio',
77
+ },
78
+ 'Mrigal' : {
79
+ 'found': 'Native to the Indo-Gangetic riverine systems of South Asia.',
80
+ 'taste': 'sweet, mild taste',
81
+ 'scientific name': 'Cirrhinus cirrhosus',
82
+ },
83
+ 'Pabda' : {
84
+ 'found': 'freshwater',
85
+ 'taste': 'mild taste',
86
+ 'scientific name': 'Ompok bimaculatus',
87
+ },
88
+ 'Pangash' : {
89
+ 'found': 'Native to South and Southeast Asia',
90
+ 'taste': 'Mild, sweet, and moist taste',
91
+ 'scientific name': 'Pangasius pangasius',
92
+ },
93
+ 'Poa' : {
94
+ 'found': 'Found in South Asia',
95
+ 'taste': 'Mild and flaky to bold and robust',
96
+ 'scientific name': 'Otolithoides pama',
97
+ },
98
+ 'Puti' : {
99
+ 'found': 'native to Asia',
100
+ 'taste': 'does not taste so good but bitter',
101
+ 'scientific name': 'Puntius sophore',
102
+ },
103
+ 'Rui' : {
104
+ 'found': 'Found in South Asia',
105
+ 'taste': 'almost free of a "fishy" taste',
106
+ 'scientific name': 'Labeo rohita',
107
+ },
108
+ 'Shing' : {
109
+ 'found': 'native to South Asia',
110
+ 'taste': 'sweet, mild taste',
111
+ 'scientific name': 'Heteropneustes fossilis',
112
+ },
113
+ 'Silver Carp' : {
114
+ 'found': 'native to eastern Asia',
115
+ 'taste': 'similar in flavor and texture to tilapia and catfish',
116
+ 'scientific name': 'Hypophthalmichthys molitrix',
117
+ },
118
+ 'Taki' : {
119
+ 'found': 'found in South and Southeast Asia',
120
+ 'taste': 'mild flavor',
121
+ 'scientific name': 'Channa striata',
122
+ },
123
+ 'Telapia' : {
124
+ 'found': 'native to Africa and the Levant',
125
+ 'taste': 'sweet, mild taste',
126
+ 'scientific name': 'Oreochromis niloticus',
127
+ },
128
+ 'Tengra' : {
129
+ 'found': 'found in South and Southeast Asia',
130
+ 'taste': 'delicate, slightly sweet taste',
131
+ 'scientific name': 'Mystus tengara',
132
+ },
133
+ }
134
+
135
+
136
  def xai_visualization(image, image_tensor, targeted_category, model, target_layers):
137
 
138
  cam = GradCAM(model = model, target_layers = target_layers)
 
198
  # print(f"Category with most probability: {np.argmax(probs)}")
199
  xai_image = "xai/xai_visualization.png"
200
 
201
+ # return xai_image, dict(zip(labels, map(float, probs)))
202
+
203
+ predicted_category = labels[targeted_category]
204
+
205
+ information = ""
206
+
207
+ if predicted_category in found_and_test.keys():
208
+ information = found_and_test[predicted_category]
209
+
210
+ # return image_path, information, dict(zip(labels, map(float, probs)))
211
+ # print(information)
212
+
213
+ return xai_image, information, dict(zip(labels, map(float, probs)))
214
 
215
  # classify_image('test images/unknown_01.jpg')
216
 
 
224
  label = "GradCAM visualization",
225
  show_label = True
226
  ),
227
+ gr.Label(
228
+ label = "Information"
229
+ ),
230
  gr.Label(
231
  num_top_classes=5,
232
  label="Predicted Category"
xai/xai_visualization.png CHANGED