Killian Steunou
Update app.py
cc9d80e unverified
raw
history blame
2.31 kB
import gradio as gr
import torch
import whisper
from moviepy.editor import AudioFileClip, ColorClip, concatenate_videoclips
from moviepy.video.VideoClip import TextClip
def generate_video(audio_path, language, lag):
# Transcribe audio
result = model.transcribe(audio_path, language=language)
# Prepare video clips from transcription segments
clips = []
for segment in result["segments"]:
text_clip = (
TextClip(
segment["text"],
fontsize=24,
font="Arial",
color="white",
bg_color="black",
size=(1280, 720),
)
.set_duration(segment["end"] - segment["start"])
.set_start(segment["start"])
)
clips.append(text_clip)
if lag > 0:
clips.insert(0, ColorClip((1280, 720), color=(0, 0, 0)).set_duration(lag))
# Concatenate clips and set audio
video = concatenate_videoclips(clips, method="compose")
# Add audio to the video
video = video.set_audio(AudioFileClip(audio_path))
# Export video to a buffer
output_path = "./transcribed_video.mp4"
video.write_videofile(output_path, fps=6, codec="libx264", audio_codec="aac")
return output_path
if __name__ == "__main__":
DEVICE = (
"cuda"
if torch.cuda.is_available()
else "cpu"
)
model = whisper.load_model("base", device=DEVICE)
# Gradio interface
iface = gr.Interface(
fn=generate_video,
inputs=[
gr.Audio(
sources=["upload", "microphone"], type="filepath", label="Audio File"
),
gr.Dropdown(
["en", "es", "fr", "de", "it", "nl", "ru", "zh"],
label="Language",
value="en",
),
gr.Slider(
minimum=0,
maximum=10,
step=1,
value=0,
label="Lag (seconds): delay the transcription by this amount of time.",
),
],
outputs=gr.Video(label="Play Video", show_download_button=True),
title="Audio Transcription Video Generator",
description="Upload your audio file and select the language for transcription.",
)
iface.launch()