Spaces:
Configuration error
Configuration error
File size: 7,964 Bytes
88435ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
from typing import Literal, cast
from openai import OpenAI
from neollm.llm.abstract_llm import AbstractLLM
from neollm.llm.gpt.abstract_gpt import AbstractGPT
from neollm.types import (
APIPricing,
ClientSettings,
LLMSettings,
Messages,
Response,
StreamResponse,
)
from neollm.utils.utils import cprint
# Models: https://platform.openai.com/docs/models/continuous-model-upgrades
# Pricing: https://openai.com/pricing
SUPPORTED_MODELS = Literal[
"gpt-4o-2024-05-13",
"gpt-4-turbo-2024-04-09",
"gpt-3.5-turbo-0125",
"gpt-4-turbo-0125",
"gpt-3.5-turbo-1106",
"gpt-4-turbo-1106",
"gpt-4v-turbo-1106",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4-0613",
"gpt-4-32k-0613",
]
def get_openai_llm(model_name: SUPPORTED_MODELS | str, client_settings: ClientSettings) -> AbstractLLM:
# Add 日付
replace_map_for_nodate: dict[str, SUPPORTED_MODELS] = {
"gpt-4o": "gpt-4o-2024-05-13",
"gpt-3.5-turbo": "gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k": "gpt-3.5-turbo-16k-0613",
"gpt-4": "gpt-4-0613",
"gpt-4-32k": "gpt-4-32k-0613",
"gpt-4-turbo": "gpt-4-turbo-1106",
"gpt-4v-turbo": "gpt-4v-turbo-1106",
}
if model_name in replace_map_for_nodate:
cprint("WARNING: model_nameに日付を指定してください", color="yellow", background=True)
print(f"model_name: {model_name} -> {replace_map_for_nodate[model_name]}")
model_name = replace_map_for_nodate[model_name]
# map to LLM
supported_model_map: dict[SUPPORTED_MODELS, AbstractLLM] = {
"gpt-4o-2024-05-13": OpenAIGPT4O_20240513(client_settings),
"gpt-4-turbo-2024-04-09": OpenAIGPT4T_20240409(client_settings),
"gpt-3.5-turbo-0125": OpenAIGPT35T_0125(client_settings),
"gpt-4-turbo-0125": OpenAIGPT4T_0125(client_settings),
"gpt-3.5-turbo-1106": OpenAIGPT35T_1106(client_settings),
"gpt-4-turbo-1106": OpenAIGPT4T_1106(client_settings),
"gpt-4v-turbo-1106": OpenAIGPT4VT_1106(client_settings),
"gpt-3.5-turbo-0613": OpenAIGPT35T_0613(client_settings),
"gpt-3.5-turbo-16k-0613": OpenAIGPT35T16k_0613(client_settings),
"gpt-4-0613": OpenAIGPT4_0613(client_settings),
"gpt-4-32k-0613": OpenAIGPT432k_0613(client_settings),
}
# 通常モデル
if model_name in supported_model_map:
model_name = cast(SUPPORTED_MODELS, model_name)
return supported_model_map[model_name]
# FTモデル
if "gpt-3.5-turbo-1106" in model_name:
return OpenAIGPT35TFT_1106(model_name, client_settings)
if "gpt-3.5-turbo-0613" in model_name:
return OpenAIGPT35TFT_0613(model_name, client_settings)
if "gpt-3.5-turbo-0125" in model_name:
return OpenAIGPT35TFT_0125(model_name, client_settings)
if "gpt4" in model_name.replace("-", ""): # TODO! もっといい条件に修正
return OpenAIGPT4FT_0613(model_name, client_settings)
cprint(
f"WARNING: このFTモデルは何?: {model_name} -> OpenAIGPT35TFT_1106として設定", color="yellow", background=True
)
return OpenAIGPT35TFT_1106(model_name, client_settings)
class OpenAILLM(AbstractGPT):
model: str
@property
def client(self) -> OpenAI:
client: OpenAI = OpenAI(**self.client_settings)
# api_key: str | None = (None,)
# timeout: httpx.Timeout(timeout=600.0, connect=5.0)
# max_retries: int = 2
return client
def generate(self, messages: Messages, llm_settings: LLMSettings) -> Response:
openai_response = self.client.chat.completions.create(
model=self.model,
messages=self._convert_to_platform_messages(messages),
stream=False,
**llm_settings,
)
response = self._convert_to_response(openai_response)
return response
def generate_stream(self, messages: Messages, llm_settings: LLMSettings) -> StreamResponse:
platform_stream_response = self.client.chat.completions.create(
model=self.model,
messages=self._convert_to_platform_messages(messages),
stream=True,
**llm_settings,
)
stream_response = self._convert_to_streamresponse(platform_stream_response)
return stream_response
# omni 2024-05-13 --------------------------------------------------------------------------------------------
class OpenAIGPT4O_20240513(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.005, output=0.015)
model: str = "gpt-4o-2024-05-13"
context_window: int = 128_000
# 2024-04-09 --------------------------------------------------------------------------------------------
class OpenAIGPT4T_20240409(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.01, output=0.03) # 10倍/15倍
model: str = "gpt-4-turbo-2024-04-09"
# model: str = "gpt-4-turbo-2024-04-09"
context_window: int = 128_000
# 0125 --------------------------------------------------------------------------------------------
class OpenAIGPT35T_0125(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.0005, output=0.0015)
model: str = "gpt-3.5-turbo-0125"
context_window: int = 16_385
class OpenAIGPT4T_0125(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.01, output=0.03)
model: str = "gpt-4-0125-preview"
context_window: int = 128_000
class OpenAIGPT35TFT_0125(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.003, output=0.006)
context_window: int = 16_385
def __init__(self, model_name: str, client_setting: ClientSettings) -> None:
super().__init__(client_setting)
self.model = model_name
# 1106 --------------------------------------------------------------------------------------------
class OpenAIGPT35T_1106(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.0010, output=0.0020)
model: str = "gpt-3.5-turbo-1106"
context_window: int = 16_385
class OpenAIGPT4T_1106(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.01, output=0.03)
model: str = "gpt-4-1106-preview"
context_window: int = 128_000
class OpenAIGPT4VT_1106(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.01, output=0.03)
model: str = "gpt-4-1106-vision-preview"
context_window: int = 128_000
class OpenAIGPT35TFT_1106(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.003, output=0.006)
context_window: int = 4_096
def __init__(self, model_name: str, client_setting: ClientSettings) -> None:
super().__init__(client_setting)
self.model = model_name
# 0613 --------------------------------------------------------------------------------------------
class OpenAIGPT35T_0613(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.0015, output=0.002)
model: str = "gpt-3.5-turbo-0613"
context_window: int = 4_096
class OpenAIGPT35T16k_0613(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.003, output=0.004)
model: str = "gpt-3.5-turbo-16k-0613"
context_window: int = 16_385
class OpenAIGPT4_0613(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.03, output=0.06)
model: str = "gpt-4-0613"
context_window: int = 8_192
class OpenAIGPT432k_0613(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.06, output=0.12)
model: str = "gpt-4-32k-0613"
context_window: int = 32_768
class OpenAIGPT35TFT_0613(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.003, output=0.006)
context_window: int = 4_096
def __init__(self, model_name: str, client_setting: ClientSettings) -> None:
super().__init__(client_setting)
self.model = model_name
class OpenAIGPT4FT_0613(OpenAILLM):
dollar_per_ktoken = APIPricing(input=0.045, output=0.090)
context_window: int = 8_192
def __init__(self, model_name: str, client_setting: ClientSettings) -> None:
super().__init__(client_setting)
self.model = model_name
|