Spaces:
Configuration error
Configuration error
File size: 17,613 Bytes
88435ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import os
import time
from abc import abstractmethod
from typing import TYPE_CHECKING, Any, Final, Generator, Literal, Optional
from neollm.exceptions import ContentFilterError
from neollm.llm import AbstractLLM, get_llm
from neollm.llm.gpt.azure_llm import AzureLLM
from neollm.myllm.abstract_myllm import AbstractMyLLM
from neollm.myllm.print_utils import (
print_client_settings,
print_delta,
print_llm_settings,
print_messages,
)
from neollm.types import (
Chunk,
ClientSettings,
Functions,
InputType,
LLMSettings,
Message,
Messages,
OutputType,
PriceInfo,
Response,
StreamOutputType,
TimeInfo,
TokenInfo,
Tools,
)
from neollm.types.openai.chat_completion import CompletionUsageForCustomPriceCalculation
from neollm.utils.preprocess import dict2json
from neollm.utils.utils import cprint
if TYPE_CHECKING:
from neollm.myllm.myl3m2 import MyL3M2
_MyL3M2 = MyL3M2[Any, Any]
_State = dict[Any, Any]
DEFAULT_LLM_SETTINGS: LLMSettings = {"temperature": 0}
DEFAULT_PLATFORM: Final[str] = "azure"
class MyLLM(AbstractMyLLM[InputType, OutputType]):
"""LLMの単一リクエストをまとめるクラス"""
def __init__(
self,
model: str,
parent: Optional["_MyL3M2"] = None,
llm_settings: LLMSettings | None = None,
client_settings: ClientSettings | None = None,
platform: str | None = None,
verbose: bool = False,
stream_verbose: bool = False,
silent_list: list[Literal["llm_settings", "inputs", "outputs", "messages", "metadata"]] | None = None,
log_dir: str | None = None,
) -> None:
"""
MyLLMクラスの初期化
Args:
model (Optional[str]): LLMモデル名
parent (Optional[MyL3M2]): 親のMyL3M2のインスタンス (self or None)
llm_settings (LLMSettings): LLMの設定パラメータ
client_settings (ClientSettings): llmのclientの設定パラメータ
platform (Optional[str]): LLMのプラットフォーム名 (デフォルト: os.environ["PLATFORM"] or "azure")
(enum: openai, azure)
verbose (bool): 出力をするかどうかのフラグ
stream_verbose (bool): assitantをstreamで出力するか(verbose=False, message in "messages"の時、無効)
silent_list (list[Literal["llm_settings", "inputs", "outputs", "messages", "metadata"]]):
verbose=True時, 出力を抑制する要素のリスト
log_dir (Optional[str]): ログを保存するディレクトリのパス Noneの時、保存しない
"""
self.parent: _MyL3M2 | None = parent
self.llm_settings = llm_settings or DEFAULT_LLM_SETTINGS
self.client_settings = client_settings or {}
self.model: str = model
self.platform: str = platform or os.environ.get("LLM_PLATFORM", DEFAULT_PLATFORM) or DEFAULT_PLATFORM
self.verbose: bool = verbose & (True if self.parent is None else self.parent.verbose) # 親に合わせる
self.silent_set = set(silent_list or [])
self.stream_verbose: bool = stream_verbose if verbose and ("messages" not in self.silent_set) else False
self.log_dir: str | None = log_dir
self.inputs: InputType | None = None
self.outputs: OutputType | None = None
self.messages: Messages | None = None
self.functions: Functions | None = None
self.tools: Tools | None = None
self.response: Response | None = None
self.called: bool = False
self.do_stream: bool = self.stream_verbose
self.llm: AbstractLLM = get_llm(
model_name=self.model, platform=self.platform, client_settings=self.client_settings
)
@abstractmethod
def _preprocess(self, inputs: InputType) -> Messages:
"""
inputs を API入力 の messages に前処理する
Args:
inputs (InputType): 入力
Returns:
Messages: API入力 の messages
>>> [{"role": "system", "content": "system_prompt"}, {"role": "user", "content": "user_prompt"}]
"""
@abstractmethod
def _postprocess(self, response: Response) -> OutputType:
"""
API の response を outputs に後処理する
Args:
response (Response): API の response
>>> {"choices": [{"message": {"role": "assistant",
>>> "content": "This is a test!"}}]}
>>> {"choices": [{"message": {"role": "assistant",
>>> "function_call": {"name": "func", "arguments": "{a: 1}"}}]}
Returns:
OutputType: 出力
"""
def _ruleprocess(self, inputs: InputType) -> OutputType | None:
"""
ルールベース処理 or APIリクエスト の判断
Args:
inputs (InputType): MyLLMの入力
Returns:
RuleOutputs:
ルールベース処理の時、MyLLMの出力を返す
APIリクエストの時、Noneを返す
"""
return None
def _update_settings(self) -> None:
"""
APIの設定の更新
Note:
messageのトークン数
>>> self.llm.count_tokens(self.messsage)
モデル変更
>>> self.model = "gpt-3.5-turbo-16k"
パラメータ変更
>>> self.llm_settings = {"temperature": 0.2}
"""
return None
def _add_tools(self, inputs: InputType) -> Tools | None:
return None
def _add_functions(self, inputs: InputType) -> Functions | None:
"""
functions の追加
Args:
inputs (InputType): 入力
Returns:
Functions | None: functions。追加しない場合None
https://json-schema.org/understanding-json-schema/reference/index.html
>>> {
>>> "name": "関数名",
>>> "description": "関数の動作の説明。GPTは説明を見て利用するか選ぶ",
>>> "parameters": {
>>> "type": "object", "properties": {"city_name": {"type": "string", "description": "都市名"}},
>>> json-schema[https://json-schema.org/understanding-json-schema/reference/index.html]
>>> }
>>> }
"""
return None
def _stream_postprocess(
self,
new_chunk: Chunk,
state: "_State",
) -> StreamOutputType:
"""call_streamのGeneratorのpostprocess
Args:
new_chunk (OpenAIChunkResponse): 新しいchunk
state (dict[Any, Any]): 状態を持てるdict. 初めは、default {}. 状態が消えてしまうのでoverwriteしない。
Returns:
StreamOutputType: 一時的なoutput
"""
if len(new_chunk.choices) == 0:
return ""
return new_chunk.choices[0].delta.content
def _generate(self, stream: bool) -> Generator[StreamOutputType, None, None]:
"""
LLMの出力を得て、`self.response`に格納する
Args:
messages (list[dict[str, str]]): LLMの入力メッセージ
"""
# 例外処理 -----------------------------------------------------------
if self.messages is None:
raise ValueError("MessagesがNoneです。")
# kwargs -----------------------------------------------------------
generate_kwargs = dict(**self.llm_settings)
if self.functions is not None:
generate_kwargs["functions"] = self.functions
if self.functions is not None:
generate_kwargs["tools"] = self.tools
# generate ----------------------------------------------------------
self._print_messages() # verbose
self.llm = get_llm(model_name=self.model, platform=self.platform, client_settings=self.client_settings)
# [stream]
if stream or self.stream_verbose:
it = self.llm.generate_stream(messages=self.messages, llm_settings=generate_kwargs)
chunk_list: list[Chunk] = []
state: "_State" = {}
for chunk in it:
chunk_list.append(chunk)
self._print_delta(chunk=chunk) # verbose: stop→改行、conent, TODO: fc→出力
yield self._stream_postprocess(new_chunk=chunk, state=state)
self.response = self.llm.convert_nonstream_response(chunk_list, self.messages, self.functions)
# [non-stream]
else:
try:
self.response = self.llm.generate(messages=self.messages, llm_settings=generate_kwargs)
self._print_message_assistant()
except Exception as e:
raise e
# ContentFilterError -------------------------------------------------
if len(self.response.choices) == 0:
cprint(self.response, color="red", background=True)
raise ContentFilterError("入力のコンテンツフィルターに引っかかりました。")
if self.response.choices[0].finish_reason == "content_filter":
cprint(self.response, color="red", background=True)
raise ContentFilterError("出力のコンテンツフィルターに引っかかりました。")
def _call(self, inputs: InputType, stream: bool = False) -> Generator[StreamOutputType, None, OutputType]:
"""
LLMの処理を行う (preprocess, check_input, generate, postprocess)
Args:
inputs (InputType): 入力データを保持する辞書
Returns:
OutputType: 処理結果の出力データ
Raises:
RuntimeError: 既に呼び出されている場合に発生
"""
if self.called:
raise RuntimeError("MyLLMは1回しか呼び出せない")
self._print_start(sep="-")
# main -----------------------------------------------------------
t_start = time.time()
self.inputs = inputs
self._print_inputs()
rulebase_output = self._ruleprocess(inputs)
if rulebase_output is None: # API リクエストを送る場合
self._update_settings()
self.messages = self._preprocess(inputs)
self.functions = self._add_functions(inputs)
self.tools = self._add_tools(inputs)
t_preprocessed = time.time()
# [generate]
it = self._generate(stream=stream)
for delta_content in it: # stream=Falseの時、空のGenerator
yield delta_content
if self.response is None:
raise ValueError("responseがNoneです。")
t_generated = time.time()
# [postprocess]
self.outputs = self._postprocess(self.response)
t_postprocessed = time.time()
else: # ルールベースの場合
self.outputs = rulebase_output
t_preprocessed = t_generated = t_postprocessed = time.time()
self.time_detail = TimeInfo(
total=t_postprocessed - t_start,
preprocess=t_preprocessed - t_start,
main=t_generated - t_preprocessed,
postprocess=t_postprocessed - t_generated,
)
self.time = t_postprocessed - t_start
# print -----------------------------------------------------------
self._print_outputs()
self._print_client_settings()
self._print_llm_settings()
self._print_metadata()
self._print_end(sep="-")
# 親MyL3M2にAppend -----------------------------------------------------------
if self.parent is not None:
self.parent.myllm_list.append(self)
self.called = True
# log -----------------------------------------------------------
self._save_log()
return self.outputs
@property
def log(self) -> dict[str, Any]:
return {
"inputs": self.inputs,
"outputs": self.outputs,
"resposnse": self.response.model_dump() if self.response is not None else None,
"input_token": self.token.input,
"output_token": self.token.output,
"total_token": self.token.total,
"input_price": self.price.input,
"output_price": self.price.output,
"total_price": self.price.total,
"time": self.time,
"time_stamp": time.time(),
"llm_settings": self.llm_settings,
"client_settings": self.client_settings,
"model": self.model,
"platform": self.platform,
"verbose": self.verbose,
"messages": self.messages,
"assistant_message": self.assistant_message,
"functions": self.functions,
"tools": self.tools,
}
def _save_log(self) -> None:
if self.log_dir is None:
return
try:
log = self.log
json_string = dict2json(log)
save_log_path = os.path.join(self.log_dir, f"{log['time_stamp']}.json")
os.makedirs(self.log_dir, exist_ok=True)
with open(save_log_path, mode="w") as f:
f.write(json_string)
except Exception as e:
cprint(e, color="red", background=True)
@property
def token(self) -> TokenInfo:
if self.response is None or self.response.usage is None:
return TokenInfo(input=0, output=0, total=0)
return TokenInfo(
input=self.response.usage.prompt_tokens,
output=self.response.usage.completion_tokens,
total=self.response.usage.total_tokens,
)
@property
def custom_token(self) -> TokenInfo | None:
if not self.llm._custom_price_calculation:
return None
if self.response is None:
return TokenInfo(input=0, output=0, total=0)
usage_for_price = getattr(self.response, "usage_for_price", None)
if not isinstance(usage_for_price, CompletionUsageForCustomPriceCalculation):
cprint("usage_for_priceがNoneです。正しくトークン計算できません", color="red", background=True)
return TokenInfo(input=0, output=0, total=0)
return TokenInfo(
input=usage_for_price.prompt_tokens,
output=usage_for_price.completion_tokens,
total=usage_for_price.total_tokens,
)
@property
def price(self) -> PriceInfo:
if self.response is None:
return PriceInfo(input=0.0, output=0.0, total=0.0)
if self.llm._custom_price_calculation:
# Geniniの時は必ずcustom_tokenがある想定
if self.custom_token is None:
cprint("custom_tokenがNoneです。正しくトークン計算できません", color="red", background=True)
else:
return PriceInfo(
input=self.llm.calculate_price(num_input_tokens=self.custom_token.input),
output=self.llm.calculate_price(num_output_tokens=self.custom_token.output),
total=self.llm.calculate_price(
num_input_tokens=self.custom_token.input, num_output_tokens=self.custom_token.output
),
)
return PriceInfo(
input=self.llm.calculate_price(num_input_tokens=self.token.input),
output=self.llm.calculate_price(num_output_tokens=self.token.output),
total=self.llm.calculate_price(num_input_tokens=self.token.input, num_output_tokens=self.token.output),
)
@property
def assistant_message(self) -> Message | None:
if self.response is None or len(self.response.choices) == 0:
return None
return self.response.choices[0].message.to_typeddict_message()
@property
def chat_history(self) -> Messages:
chat_history: Messages = []
if self.messages:
chat_history += self.messages
if self.assistant_message is not None:
chat_history.append(self.assistant_message)
return chat_history
def _print_llm_settings(self) -> None:
if not ("llm_settings" not in self.silent_set and self.verbose):
return
print_llm_settings(
llm_settings=self.llm_settings,
model=self.model,
platform=self.platform,
engine=self.llm.engine if isinstance(self.llm, AzureLLM) else None,
)
def _print_messages(self) -> None:
if not ("messages" not in self.silent_set and self.verbose):
return
print_messages(self.messages, title=True)
def _print_message_assistant(self) -> None:
if self.response is None or len(self.response.choices) == 0:
return
if not ("messages" not in self.silent_set and self.verbose):
return
print_messages(messages=[self.response.choices[0].message], title=False)
def _print_delta(self, chunk: Chunk) -> None:
if not ("messages" not in self.silent_set and self.verbose):
return
print_delta(chunk)
def _print_client_settings(self) -> None:
if not ("client_settings" not in self.silent_set and self.verbose):
return
print_client_settings(self.llm.client_settings)
def __repr__(self) -> str:
return f"MyLLM({self.__class__.__name__})"
|