Spaces:
Configuration error
Configuration error
import tiktoken | |
from neollm.llm.abstract_llm import AbstractLLM | |
from neollm.types import ( | |
ChatCompletion, | |
ChatCompletionChunk, | |
Message, | |
Messages, | |
OpenAIMessages, | |
OpenAIResponse, | |
OpenAIStreamResponse, | |
Response, | |
StreamResponse, | |
) | |
class AbstractGPT(AbstractLLM): | |
def encode(self, text: str) -> list[int]: | |
tokenizer = tiktoken.encoding_for_model(self.model or "gpt-3.5-turbo") | |
return tokenizer.encode(text) | |
def decode(self, encoded: list[int]) -> str: | |
tokenizer = tiktoken.encoding_for_model(self.model or "gpt-3.5-turbo") | |
return tokenizer.decode(encoded) | |
def count_tokens(self, messages: list[Message] | None = None, only_response: bool = False) -> int: | |
""" | |
トークン数の計測 | |
Args: | |
messages (Messages): messages | |
Returns: | |
int: トークン数 | |
""" | |
if messages is None: | |
return 0 | |
# count tokens | |
num_tokens: int = 0 | |
# messages ---------------------------------------------------------------------------v | |
for message in messages: | |
# per message ------------------------------------------- | |
num_tokens += 4 | |
# content ----------------------------------------------- | |
content = message.get("content", None) | |
if content is None: | |
num_tokens += 0 | |
elif isinstance(content, str): | |
num_tokens += len(self.encode(content)) | |
continue | |
elif isinstance(content, list): | |
for content_params in content: | |
if content_params["type"] == "text": | |
num_tokens += len(self.encode(content_params["text"])) | |
# TODO: ChatCompletionFunctionMessageParam.name | |
# tokens_per_name = 1 | |
# tool calls ------------------------------------------------ | |
# TODO: ChatCompletionAssistantMessageParam.function_call | |
# TODO: ChatCompletionAssistantMessageParam.tool_calls | |
if only_response: | |
if len(messages) != 1: | |
raise ValueError("only_response=Trueの場合、messagesは1つのみにしてください。") | |
num_tokens -= 4 # per message分を消す | |
else: | |
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> | |
return num_tokens | |
def _convert_to_response(self, platform_response: OpenAIResponse) -> Response: | |
return ChatCompletion(**platform_response.model_dump()) | |
def _convert_to_platform_messages(self, messages: Messages) -> OpenAIMessages: | |
# OpenAIのMessagesをデフォルトに置いているため、変換は不要 | |
platform_messages: OpenAIMessages = messages | |
return platform_messages | |
def _convert_to_streamresponse(self, platform_streamresponse: OpenAIStreamResponse) -> StreamResponse: | |
for chunk in platform_streamresponse: | |
yield ChatCompletionChunk(**chunk.model_dump()) | |