File size: 9,379 Bytes
68d34d0
 
 
 
 
 
 
ac510cd
68d34d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdd016a
 
 
ac510cd
 
fdd016a
 
 
 
 
 
 
 
 
ac510cd
fdd016a
 
 
ac510cd
 
 
 
68d34d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac510cd
 
 
 
68d34d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac510cd
 
 
68d34d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

import gradio as gr
import numpy as np
from gradio_image_prompter import ImagePrompter
from inference import ModelFactory
from face import FaceAlgo
from sam_everything import SamAnything
from ocr import do_ocr


components = {}

params = {
    "algo_type": None,
    "input_image":None
}


def gradio(*keys):
    if len(keys) == 1 and type(keys[0]) in [list, tuple]:
        keys = keys[0]

    return [components[k] for k in keys]


algo_map = {
    "目标检测":"detect",
    "单阶段目标检测":"onestep_detect",
    "分类":"classification",
    "特征提取":"feature",
    "语义分割":"semantic",
    "实例分割":"instance",
    "关键点检测":"keypoint",
    "全景分割":"panoptic",
    "YOLO":"yolo",
}

face_algo_map = {
    "人脸检测":"detect",
    "人脸识别":"recognize",
    "人脸比对":"compare",
    "特征提取":"feature",
    "属性分析":"attr",
}

def create_ui():
    with gr.Blocks() as demo:
        with gr.Tab("基础算法"):
            with gr.Row():
                with gr.Column(scale=2):
                    components["algo_type"] = gr.Dropdown(
                                    ["目标检测","单阶段目标检测", "分类", "特征提取","语义分割","实例分割","关键点检测","全景分割","YOLO"],value="全景分割",
                                    label="算法类别",interactive=True
                            )
                with gr.Column(scale=2):
                    components["submit_btn"] = gr.Button(value="解析")
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Row(elem_id='audio-container'):
                        with gr.Group():
                            components["image_input"] = gr.Image(type="pil",elem_id='image-input',label='输入')
                with gr.Column(scale=2):
                    with gr.Row():
                        with gr.Group():
                            components["image_output"] = gr.Image(type="pil",elem_id='image-output',label='输出',interactive=False)

            with gr.Row():
                with gr.Group():
                    components["result_output"] = gr.JSON(label="推理结果")

        with gr.Tab("人脸算法"):   
            with gr.Row():
                with gr.Column(scale=2):
                    components["face_type"] = gr.Dropdown(
                                    ["人脸检测","人脸识别", "人脸比对", "特征提取","属性分析"],value="人脸检测",
                                    label="算法类别",interactive=True
                            )
                with gr.Column(scale=2):
                    components["face_submit_btn"] = gr.Button(value="解析")
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Row(elem_id=''):
                        with gr.Group():
                            components["face_input"] = gr.Gallery(elem_id='face-input',label='输入',columns=2,type="pil")
                with gr.Column(scale=2):
                    with gr.Row():
                        with gr.Group():
                            components["face_image_output"] = gr.Gallery(elem_id='face_image_output',label='输出',columns=2,interactive=False)

            with gr.Row():
                with gr.Group():
                    components["face_output"] = gr.JSON(label="推理结果")
        with gr.Tab("SAM everything"): 
            with gr.Row():
                with gr.Column(scale=2):
                    components["sam_submit_btn"] = gr.Button(value="解析")
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Group():
                        # components["sam_input"] = gr.ImageEditor(elem_id='sam-input',label='输入',type="pil")
                        components["sam_input"] = ImagePrompter(elem_id='sam-input',label='输入',type="pil")
                with gr.Column(scale=2):
                    with gr.Group():
                        components["sam_output"] = gr.Gallery(elem_id='sam_output',label='输出',columns=1,interactive=False)

        with gr.Tab("OCR"):
            with gr.Row():
                with gr.Column(scale=2):
                        components["ocr_type"] = gr.Dropdown(
                                        ["OCR","Easy"],value="Easy",
                                        label="算法类别",interactive=True
                                )
                with gr.Column(scale=2):
                    components["submit_ocr_btn"] = gr.Button(value="解析")

            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Row(elem_id=''):
                        with gr.Group():
                            components["ocr_input"] = gr.Image(elem_id='ocr-input',label='输入',type="pil")
                with gr.Column(scale=2):
                    with gr.Row():
                        with gr.Group():
                            components["ocr_output"] = gr.Image(elem_id='ocr_output',label='输出',interactive=False,type="pil")
            with gr.Row():
                with gr.Group():
                    components["ocr_json_output"] = gr.JSON(label="推理结果")

        create_event_handlers()
    return demo


def create_event_handlers():
    params["algo_type"] = gr.State("全景分割")
    params["input_image"] = gr.State()
    params["face_type"] = gr.State("人脸检测")
    

    components["image_input"].upload(
        lambda x: x, gradio('image_input'), params["input_image"]
    )
    
    components["algo_type"].change(
        lambda x: x, gradio('algo_type'), params["algo_type"]
    )

    components["submit_btn"].click(
        do_refernce,gradio('algo_type','image_input'),gradio("result_output",'image_output')
    )

    components["face_type"].change(
        ui_by_facetype, gradio('face_type'), params["face_type"]
    )

    components["face_submit_btn"].click(
        do_face_refernce,gradio('face_type','face_input'),gradio("face_output",'face_image_output')
    )

    # components["sam_input"].upload(
    #     do_sam_everything,gradio('sam_input'),gradio("sam_output")
    # )

    # components["sam_input"].change(
    #     do_sam_everything,gradio('sam_input'),gradio("sam_output")
    # )

    components["sam_submit_btn"].click(
        do_sam_everything,gradio('sam_input'),gradio("sam_output")
    )

    components["submit_ocr_btn"].click(
        do_ocr,gradio('ocr_type','ocr_input'),gradio("ocr_output","ocr_json_output")
    )

def do_refernce(algo_type,input_image):
# def do_refernce():
    print("input image",input_image)
    print(algo_type)

    if input_image is None:
        gr.Warning('请上传图片')
        return None
    algo_type = algo_map[algo_type]
    factory = ModelFactory()
    output,output_image = factory.predict(pil_image=input_image,task_type=algo_type)
    if output_image is None or len(output_image) == 0:
        return output,None
    print("output image",output_image[0])
    return output,output_image[0]

def ui_by_facetype(face_type):
    print("ui_by_facetype",face_type)


def do_face_refernce(algo_type,input_images):
    print("input image",input_images)
    print(algo_type)

    if input_images is None:
        gr.Warning('请上传图片')
        return None,None
    
    input1 = input_images[0][0]
    input2 = None
    algo_type = face_algo_map[algo_type]
    if algo_type == "compare" and len(input_images) >=2:
        input2 = input_images[1][0]
    elif algo_type == "compare" and len(input_images) < 2:
        gr.Warning('请上传两张图片')    
        return None,None

    m = FaceAlgo()  # pragma: no cover
    out,faces = m.predict(pil_image=input1,pil_image1=input2,algo_type=algo_type)

    return out,faces

def do_sam_everything(im):
    sam_anything = SamAnything()
    print(im)
    image_pil = im['image']
    points = im['points']
    images = None
    if points is None or len(points) == 0:
        _, images = sam_anything.seg_all(image_pil)
    else:
        point_coords = []
        box = None
        for item in points:
            if item[2] == 1:
                # 点类型
                point_coords.append([item[0],item[1]])
            else:
                # box类型,只使用最后一个box
                box = [item[0],item[1],item[3],item[4]]
                box = np.array(box)
        
        if box is not None:
            _, images = sam_anything.seg_with_promp(image_pil,box=box)
        else:
            coords = np.array(point_coords)
            print("point_coords:",coords.shape)
            _, images = sam_anything.seg_with_promp(image_pil,point_coords=coords)
        
    return images


    

def point_to_mask(pil_image):
    # 遍历每个像素
    width, height = pil_image.size
    print(width, height)
    points_list = []
    for x in range(width):
        for y in range(height):
            # 获取像素的RGB值
            pix_val = pil_image.getpixel((x, y))
            if pix_val[0] != 0 and pix_val[1] != 0 and pix_val[2] != 0:
                points_list.append((x, y))
    points_array = np.array(points_list)
    points_array_reshaped = points_array.reshape(-1, 2)
    return points_array_reshaped

if __name__ == "__main__":
    demo = create_ui()
    # demo.launch(server_name="10.151.124.137")
    demo.launch()