Spaces:
Sleeping
Sleeping
File size: 17,351 Bytes
68d34d0 ac510cd 494b300 864919f 68d34d0 fdd016a ac510cd fdd016a ac510cd fdd016a ac510cd 494b300 4d10a94 494b300 864919f 494b300 4d10a94 494b300 4d10a94 494b300 4d10a94 494b300 4d10a94 494b300 68d34d0 494b300 4d10a94 494b300 4d10a94 494b300 4d10a94 68d34d0 1405c00 68d34d0 494b300 1405c00 494b300 1405c00 68d34d0 ac510cd 494b300 4d10a94 864919f 68d34d0 494b300 4d10a94 494b300 4d10a94 494b300 4d10a94 494b300 4d10a94 494b300 4d10a94 494b300 4d10a94 494b300 4d10a94 494b300 864919f 494b300 68d34d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import gradio as gr
import numpy as np
from gradio_image_prompter import ImagePrompter
from inference import ModelFactory
from face import FaceAlgo
from sam_everything import SamAnything
from ocr import do_ocr
from retriever import knowledgeBase
import time
from pathlib import Path
current_file_path = Path(__file__).resolve()
absolute_path = (current_file_path.parent / "files" / "input").resolve()
components = {}
params = {
"algo_type": None,
"input_image":None
}
def gradio(*keys):
if len(keys) == 1 and type(keys[0]) in [list, tuple]:
keys = keys[0]
return [components[k] for k in keys]
algo_map = {
"目标检测":"detect",
"单阶段目标检测":"onestep_detect",
"分类":"classification",
"特征提取":"feature",
"语义分割":"semantic",
"实例分割":"instance",
"关键点检测":"keypoint",
"全景分割":"panoptic",
"YOLO":"yolo",
}
face_algo_map = {
"人脸检测":"detect",
"人脸识别":"recognize",
"人脸比对":"compare",
"特征提取":"feature",
"属性分析":"attr",
}
def create_ui():
with gr.Blocks() as demo:
with gr.Tab("基础算法"):
with gr.Row():
with gr.Column(scale=2):
components["algo_type"] = gr.Dropdown(
["目标检测","单阶段目标检测", "分类", "特征提取","语义分割","实例分割","关键点检测","全景分割","YOLO"],value="全景分割",
label="算法类别",interactive=True
)
with gr.Column(scale=2):
components["submit_btn"] = gr.Button(value="解析")
with gr.Row():
with gr.Column(scale=2):
with gr.Row(elem_id='audio-container'):
with gr.Group():
components["image_input"] = gr.Image(type="pil",elem_id='image-input',label='输入')
with gr.Column(scale=2):
with gr.Row():
with gr.Group():
components["image_output"] = gr.Image(type="pil",elem_id='image-output',label='输出',interactive=False)
with gr.Row():
with gr.Group():
components["result_output"] = gr.JSON(label="推理结果")
with gr.Tab("人脸算法"):
with gr.Row():
with gr.Column(scale=2):
components["face_type"] = gr.Dropdown(
["人脸检测","人脸识别", "人脸比对", "特征提取","属性分析"],value="人脸检测",
label="算法类别",interactive=True
)
with gr.Column(scale=2):
components["face_submit_btn"] = gr.Button(value="解析")
with gr.Row():
with gr.Column(scale=2):
with gr.Row(elem_id=''):
with gr.Group():
components["face_input"] = gr.Gallery(elem_id='face-input',label='输入',columns=2,type="pil")
with gr.Column(scale=2):
with gr.Row():
with gr.Group():
components["face_image_output"] = gr.Gallery(elem_id='face_image_output',label='输出',columns=2,interactive=False)
with gr.Row():
with gr.Group():
components["face_output"] = gr.JSON(label="推理结果")
with gr.Tab("SAM everything"):
with gr.Row():
with gr.Column(scale=2):
components["sam_submit_btn"] = gr.Button(value="解析")
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
# components["sam_input"] = gr.ImageEditor(elem_id='sam-input',label='输入',type="pil")
components["sam_input"] = ImagePrompter(elem_id='sam-input',label='输入',type="pil")
with gr.Column(scale=2):
with gr.Group():
components["sam_output"] = gr.Gallery(elem_id='sam_output',label='输出',columns=1,interactive=False)
with gr.Tab("OCR"):
with gr.Row():
with gr.Column(scale=2):
components["ocr_type"] = gr.Dropdown(
["OCR","Easy"],value="Easy",
label="算法类别",interactive=True
)
with gr.Column(scale=2):
components["submit_ocr_btn"] = gr.Button(value="解析")
with gr.Row():
with gr.Column(scale=2):
with gr.Row(elem_id=''):
with gr.Group():
components["ocr_input"] = gr.Image(elem_id='ocr-input',label='输入',type="pil")
with gr.Column(scale=2):
with gr.Row():
with gr.Group():
components["ocr_output"] = gr.Image(elem_id='ocr_output',label='输出',interactive=False,type="pil")
with gr.Row():
with gr.Group():
components["ocr_json_output"] = gr.JSON(label="推理结果")
with gr.Tab("知识库"):
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
components["db_view"] = gr.Dataframe(
headers=["列表"],
datatype=["str"],
row_count=2,
col_count=(1, "fixed"),
interactive=False
)
components["file_expr"] = gr.FileExplorer(
scale=1,
value=[],
file_count="single",
root=absolute_path,
# ignore_glob="**/__init__.py",
elem_id="file_expr",
)
with gr.Column(scale=2):
with gr.Row():
with gr.Column(scale=2):
components["db_name"] = gr.Textbox(label="名称", info="请输入库名称", lines=1, value="")
with gr.Column(scale=2):
components["db_submit_btn"] = gr.Button(value="提交")
components["file_upload"] = gr.File(elem_id='file_upload',file_count='multiple',label='文档上传', file_types=[".pdf", ".doc", '.docx', '.json', '.csv'])
with gr.Row():
with gr.Column(scale=2):
components["db_input"] = gr.Textbox(label="关键词", lines=1, value="")
with gr.Column(scale=1):
components["db_test_select"] = gr.Dropdown(knowledgeBase.get_bases(),multiselect=True, label="知识库选择")
with gr.Column(scale=1):
components["dbtest_submit_btn"] = gr.Button(value="检索")
with gr.Row():
with gr.Group():
components["db_search_result"] = gr.JSON(label="检索结果")
with gr.Tab("问答"):
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
components["ak"] = gr.Textbox(label="appid")
components["sk"] = gr.Textbox(label="secret")
components["llm_client"] =gr.Radio(["Wenxin", "Tongyi","Huggingface"],value="Wenxin", label="llm")
components["llm_setting_btn"] = gr.Button(value="设置")
with gr.Column(scale=2):
with gr.Group():
components["chatbot"] = gr.Chatbot(
[(None,"你好,有什么需要帮助的?")],
elem_id="chatbot",
bubble_full_width=False,
height=600
)
components["chat_input"] = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
components["db_select"] = gr.CheckboxGroup(knowledgeBase.get_bases(),label="知识库", info="可选择1个或多个知识库")
create_event_handlers()
demo.load(init,None,gradio("db_view","db_select","db_test_select"))
return demo
def init():
db_list = knowledgeBase.get_bases()
db_df_list = knowledgeBase.get_df_bases()
return db_df_list,gr.CheckboxGroup(db_list,label="知识库", info="可选择1个或多个知识库"),gr.Dropdown(db_list,multiselect=True, label="知识库选择")
def create_event_handlers():
params["algo_type"] = gr.State("全景分割")
params["input_image"] = gr.State()
params["face_type"] = gr.State("人脸检测")
components["image_input"].upload(
lambda x: x, gradio('image_input'), params["input_image"]
)
components["algo_type"].change(
lambda x: x, gradio('algo_type'), params["algo_type"]
)
components["submit_btn"].click(
do_refernce,gradio('algo_type','image_input'),gradio("result_output",'image_output')
)
components["face_type"].change(
ui_by_facetype, gradio('face_type'), params["face_type"]
)
components["face_submit_btn"].click(
do_face_refernce,gradio('face_type','face_input'),gradio("face_output",'face_image_output')
)
# components["sam_input"].upload(
# do_sam_everything,gradio('sam_input'),gradio("sam_output")
# )
# components["sam_input"].change(
# do_sam_everything,gradio('sam_input'),gradio("sam_output")
# )
components["sam_submit_btn"].click(
do_sam_everything,gradio('sam_input'),gradio("sam_output")
)
components["submit_ocr_btn"].click(
do_ocr,gradio('ocr_type','ocr_input'),gradio("ocr_output","ocr_json_output")
)
components["db_submit_btn"].click(
file_handler,gradio('file_upload','db_name'),gradio("db_view",'db_select',"db_test_select")
)
components["chat_input"].submit(
do_llm_request, gradio("chatbot", "chat_input"), gradio("chatbot", "chat_input")
).then(
do_llm_response, gradio("chatbot","db_select"), gradio("chatbot"), api_name="bot_response"
).then(
lambda: gr.MultimodalTextbox(interactive=True), None, gradio('chat_input')
)
# components["chatbot"].like(print_like_dislike, None, None)
components['dbtest_submit_btn'].click(
do_search, gradio('db_test_select','db_input'), gradio('db_search_result')
)
components['llm_setting_btn'].click(
llm, gradio('ak','sk','llm_client'), None
)
components['db_view'].select(
db_expr, gradio('db_view'), gradio('file_expr')
)
def do_refernce(algo_type,input_image):
# def do_refernce():
print("input image",input_image)
print(algo_type)
if input_image is None:
gr.Warning('请上传图片')
return None
algo_type = algo_map[algo_type]
factory = ModelFactory()
output,output_image = factory.predict(pil_image=input_image,task_type=algo_type)
if output_image is None or len(output_image) == 0:
return output,None
print("output image",output_image[0])
return output,output_image[0]
def ui_by_facetype(face_type):
print("ui_by_facetype",face_type)
def do_face_refernce(algo_type,input_images):
print("input image",input_images)
print(algo_type)
if input_images is None:
gr.Warning('请上传图片')
return None,None
input1 = input_images[0][0]
input2 = None
algo_type = face_algo_map[algo_type]
if algo_type == "compare" and len(input_images) >=2:
input2 = input_images[1][0]
elif algo_type == "compare" and len(input_images) < 2:
gr.Warning('请上传两张图片')
return None,None
m = FaceAlgo() # pragma: no cover
out,faces = m.predict(pil_image=input1,pil_image1=input2,algo_type=algo_type)
return out,faces
def do_sam_everything(im):
sam_anything = SamAnything()
print(im)
image_pil = im['image']
points = im['points']
images = None
if points is None or len(points) == 0:
_, images = sam_anything.seg_all(image_pil)
else:
point_coords = []
box = None
for item in points:
if item[2] == 1:
# 点类型
point_coords.append([item[0],item[1]])
else:
# box类型,只使用最后一个box
box = [item[0],item[1],item[3],item[4]]
box = np.array(box)
if box is not None:
_, images = sam_anything.seg_with_promp(image_pil,box=box)
else:
coords = np.array(point_coords)
print("point_coords:",coords.shape)
_, images = sam_anything.seg_with_promp(image_pil,point_coords=coords)
return images
def point_to_mask(pil_image):
# 遍历每个像素
width, height = pil_image.size
print(width, height)
points_list = []
for x in range(width):
for y in range(height):
# 获取像素的RGB值
pix_val = pil_image.getpixel((x, y))
if pix_val[0] != 0 and pix_val[1] != 0 and pix_val[2] != 0:
points_list.append((x, y))
points_array = np.array(points_list)
points_array_reshaped = points_array.reshape(-1, 2)
return points_array_reshaped
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def do_llm_request(history, message):
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
return history, gr.MultimodalTextbox(value=None, interactive=False)
def do_llm_response(history,selected_dbs):
print("do_llm_response:",history,selected_dbs)
user_input = history[-1][0]
prompt = ""
quote = ""
if len(selected_dbs) > 0:
knowledge = knowledgeBase.retrieve_documents(selected_dbs,user_input)
print("do_llm_response context:",knowledge)
prompt = f'''
背景1:{knowledge[0]["content"]}
背景2:{knowledge[1]["content"]}
背景3:{knowledge[2]["content"]}
基于以上事实回答问题:{user_input}
'''
quote = f'''
> 文档:{knowledge[0]["meta"]["source"]},页码:{knowledge[0]["meta"]["page"]}
> 文档:{knowledge[1]["meta"]["source"]},页码:{knowledge[1]["meta"]["page"]}
> 文档:{knowledge[2]["meta"]["source"]},页码:{knowledge[2]["meta"]["page"]}
'''
else:
prompt = user_input
history[-1][1] = ""
if llm_client is None:
gr.Warning("请先设置大模型")
response = "模型参数未设置"
else:
print("do_llm_response prompt:",prompt)
response = llm_client(prompt)
response = response.removeprefix(prompt)
response += quote
for character in response:
history[-1][1] += character
time.sleep(0.01)
yield history
llm_client = None
def llm(ak,sk,client):
global llm_client
import llm
llm.init_param(ak,sk)
if client == "Wenxin":
llm_client = llm.baidu_client
elif client == "Tongyi":
llm_client = llm.qwen_agent_app
elif client == "Huggingface":
llm_client = llm.hg_client
if ak == "" and sk == "":
gr.Info("重置成功")
else:
gr.Info("设置成功")
return llm_client
def file_handler(file_objs,name):
import shutil
import os
print("file_obj:",file_objs)
os.makedirs(os.path.dirname("./files/input/"), exist_ok=True)
for idx, file in enumerate(file_objs):
print(file)
file_path = "./files/input/" + os.path.basename(file.name)
if not os.path.exists(file_path):
shutil.move(file.name,"./files/input/")
knowledgeBase.add_documents_to_kb(name,[file_path])
dbs = knowledgeBase.get_bases()
dfs = knowledgeBase.get_df_bases()
return dfs,gr.CheckboxGroup(dbs,label="知识库", info="可选择1个或多个知识库"),gr.Dropdown(dbs,multiselect=True, label="知识库选择")
def db_expr(selected_index: gr.SelectData, dataframe_origin):
print("db_expr",selected_index.index)
dbname = dataframe_origin.iloc[selected_index.index[0],selected_index.index[1]]
print("db_expr",dbname)
return knowledgeBase.get_db_files(dbname)
def do_search(selected_dbs,user_input):
print("do_search:",selected_dbs,user_input)
context = knowledgeBase.retrieve_documents(selected_dbs,user_input)
return context
if __name__ == "__main__":
demo = create_ui()
# demo.launch(server_name="10.151.124.137")
demo.launch() |