File size: 7,569 Bytes
cc74372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61eb5cb
cc74372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

import gradio as gr
import numpy as np
import time
from pathlib import Path
from retriever import knowledgeBase
import llm

current_file_path = Path(__file__).resolve()
absolute_path = (current_file_path.parent / "files" / "input").resolve()

components = {}

params = {
    "algo_type": None,
    "input_image":None
}


def gradio(*keys):
    if len(keys) == 1 and type(keys[0]) in [list, tuple]:
        keys = keys[0]

    return [components[k] for k in keys]

def create_ui():
    with gr.Blocks() as demo:
        with gr.Tab("知识库"):
            with gr.Row():
                with gr.Column(scale=1):
                    with gr.Group():
                        components["db_view"] = gr.Dataframe(
                                                    headers=["列表"],
                                                    datatype=["str"],
                                                    row_count=2,
                                                    col_count=(1, "fixed"),
                                                    interactive=False
                        )
                        components["file_expr"] = gr.FileExplorer(
                            scale=1,
                            value=[],
                            file_count="single",
                            root_dir=absolute_path,
                            # ignore_glob="**/__init__.py",
                            elem_id="file_expr",
                        )
                with gr.Column(scale=2):
                    with gr.Row():
                        with gr.Column(scale=2):
                            components["db_name"] = gr.Textbox(label="名称", info="请输入库名称", lines=1, value="")
                        with gr.Column(scale=2):
                            components["db_submit_btn"] = gr.Button(value="提交")
                    components["file_upload"] = gr.File(elem_id='file_upload',file_count='multiple',label='文档上传', file_types=[".pdf", ".doc", '.docx', '.json', '.csv'])
            with gr.Row():
                with gr.Column(scale=2):
                    components["db_input"] = gr.Textbox(label="关键词", lines=1, value="")
                with gr.Column(scale=1):
                    components["db_test_select"] = gr.Dropdown(knowledgeBase.get_bases(),multiselect=True, label="知识库选择")
                with gr.Column(scale=1):
                    components["dbtest_submit_btn"] = gr.Button(value="检索")
            with gr.Row():
                with gr.Group():
                    components["db_search_result"] = gr.JSON(label="检索结果")

        with gr.Tab("问答"):
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Group():
                        components["chatbot"] = gr.Chatbot(
                                            [(None,"你好,有什么需要帮助的?")],
                                            elem_id="chatbot",
                                            bubble_full_width=False,
                                            height=600
                            )
                        components["chat_input"] = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
                        components["db_select"] = gr.CheckboxGroup(knowledgeBase.get_bases(),label="知识库", info="可选择1个或多个知识库")
        create_event_handlers()
        demo.load(init,None,gradio("db_view","db_select","db_test_select"))
    return demo

def init():
    db_list = knowledgeBase.get_bases()
    db_df_list = knowledgeBase.get_df_bases()
    return db_df_list,gr.CheckboxGroup(db_list,label="知识库", info="可选择1个或多个知识库"),gr.Dropdown(db_list,multiselect=True, label="知识库选择")

def create_event_handlers():

    components["db_submit_btn"].click(
        file_handler,gradio('file_upload','db_name'),gradio("db_view",'db_select',"db_test_select")
    )

    components["chat_input"].submit(
        do_llm_request, gradio("chatbot", "chat_input"), gradio("chatbot", "chat_input")
    ).then(
        do_llm_response, gradio("chatbot","db_select"), gradio("chatbot"), api_name="bot_response"
    ).then(
        lambda: gr.MultimodalTextbox(interactive=True), None, gradio('chat_input')
    )

    # components["chatbot"].like(print_like_dislike, None, None)

    components['dbtest_submit_btn'].click(
        do_search, gradio('db_test_select','db_input'), gradio('db_search_result')
    )

    components['db_view'].select(
        db_expr, gradio('db_view'), gradio('file_expr')
    )

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def do_llm_request(history, message):
    for x in message["files"]:
        history.append(((x,), None))
    if message["text"] is not None:
        history.append((message["text"], None))
    return history, gr.MultimodalTextbox(value=None, interactive=False)

def do_llm_response(history,selected_dbs):
    print("do_llm_response:",history,selected_dbs)
    user_input = history[-1][0]
    prompt = ""
    quote = ""
    if len(selected_dbs) > 0:
        knowledge = knowledgeBase.retrieve_documents(selected_dbs,user_input)
        print("do_llm_response context:",knowledge)
        prompt = f'''
背景1:{knowledge[0]["content"]}
背景2:{knowledge[1]["content"]}
背景3:{knowledge[2]["content"]}
基于以上事实回答问题:{user_input}
        '''

        quote = f'''
> 文档:{knowledge[0]["meta"]["source"]},页码:{knowledge[0]["meta"]["page"]}
> 文档:{knowledge[1]["meta"]["source"]},页码:{knowledge[1]["meta"]["page"]}
> 文档:{knowledge[2]["meta"]["source"]},页码:{knowledge[2]["meta"]["page"]}
'''
    else:
        prompt = user_input
    
    history[-1][1] = ""
    if llm_client is None:
        gr.Warning("请先设置大模型")
        response = "模型参数未设置"
    else:
        print("do_llm_response prompt:",prompt)
        response = llm_client(prompt)
        response = response.removeprefix(prompt)
        response += quote

    for character in response:
        history[-1][1] += character
        time.sleep(0.01)
        yield history


llm_client = llm.baidu_client


def file_handler(file_objs,name):
    import shutil
    import os
    
    print("file_obj:",file_objs)
    
    os.makedirs(os.path.dirname("./files/input/"), exist_ok=True)

    for idx, file in enumerate(file_objs):
        print(file)
        file_path = "./files/input/" +  os.path.basename(file.name)
        if not os.path.exists(file_path):
            shutil.move(file.name,"./files/input/")
        
        knowledgeBase.add_documents_to_kb(name,[file_path])

    dbs = knowledgeBase.get_bases()
    dfs = knowledgeBase.get_df_bases()
    return dfs,gr.CheckboxGroup(dbs,label="知识库", info="可选择1个或多个知识库"),gr.Dropdown(dbs,multiselect=True, label="知识库选择")

def db_expr(selected_index: gr.SelectData, dataframe_origin):
    print("db_expr",selected_index.index)
    
    dbname = dataframe_origin.iloc[selected_index.index[0],selected_index.index[1]]
    print("db_expr",dbname)
    
    return knowledgeBase.get_db_files(dbname)

def do_search(selected_dbs,user_input):
    print("do_search:",selected_dbs,user_input)
    context = knowledgeBase.retrieve_documents(selected_dbs,user_input)
    return context

if __name__ == "__main__":
    demo = create_ui()
    # demo.launch(server_name="10.151.124.137")
    demo.launch()