Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import torch.nn as nn | |
from transformers import BertModel, BertTokenizer | |
# define the labels for the mutli-classification model | |
class_names = ['Negative', 'Neutral', 'Positive'] | |
# Build the Sentiment Classifier class | |
class SentimentClassifier(nn.Module): | |
# Constructor class | |
def __init__(self, n_classes): | |
super(SentimentClassifier, self).__init__() | |
self.bert = BertModel.from_pretrained('lothritz/LuxemBERT') | |
self.drop = nn.Dropout(p=0.3) | |
self.out = nn.Linear(self.bert.config.hidden_size, n_classes) | |
# Forward propagaion class | |
def forward(self, input_ids, attention_mask): | |
_, pooled_output = self.bert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
return_dict=False | |
) | |
# Add a dropout layer | |
output = self.drop(pooled_output) | |
return self.out(output) | |
# load the CNN binary classification model | |
model = SentimentClassifier(len(class_names)) | |
model.load_state_dict(torch.load('./pytorch_model.bin', map_location=torch.device('cpu'))) | |
tokenizer = BertTokenizer.from_pretrained('./') | |
def encode(text): | |
encoded_text = tokenizer.encode_plus( | |
text, | |
max_length=50, | |
add_special_tokens=True, | |
return_token_type_ids=False, | |
pad_to_max_length=True, | |
return_attention_mask=True, | |
return_tensors='pt', | |
) | |
return encoded_text | |
def classify(text): | |
encoded_comment = encode(text) | |
input_ids = encoded_comment['input_ids'] | |
attention_mask = encoded_comment['attention_mask'] | |
output = model(input_ids, attention_mask) | |
_, prediction = torch.max(output, dim=1) | |
return class_names[prediction] | |
demo = gr.Interface(fn=classify, inputs="text", outputs="text", title="Sentiment Analyser", description="Text classifer for Luxembourgish") | |
demo.launch() |